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Abstract
Accidental or intentional mismanagement of cloud soft-
ware by administrators poses a serious threat to the in-
tegrity and confidentiality of customer data hosted by
cloud services. Trusted computing provides an impor-
tant foundation for designing cloud services that are
more resilient to these threats. However, current trusted
computing technology is ill-suited for the cloud as it ex-
poses too many internal details of the cloud infrastruc-
ture, hinders fault tolerance and load-balancing flexibil-
ity, and performs poorly. We present Excalibur, a sys-
tem that addresses these limitations. Excalibur enables
the design of trustworthy cloud services by providing a
new trusted computing abstraction calledpolicy-sealed
data. This abstraction enables data to besealed(i.e.,
encrypted to a customer-defined policy) such that it can
only beunsealed(i.e., decrypted) by nodes whose con-
figurations match the policy. To provide this abstrac-
tion, Excalibur uses attribute-based encryption, which
reduces the overhead of key management and improves
the performance of the distributed protocols that are
employed. To demonstrate that Excalibur is practical,
we incorporated it in the Eucalyptus open-source cloud
platform. Policy-sealed data can provide greater con-
fidence to Eucalyptus customers that data is processed
exclusively by nodes that meet their preferences.

1 Introduction
Managing cloud computing services is a complex and
error-prone task. Cloud providers delegate this task
to skilled cloud administrators who are responsible for
managing the software of the cloud infrastructure. How-
ever, it is difficult to assure that their actions are er-
ror free. In particular, an accidental or, in some cases,
an intentional action from a cloud administrator may
lead to leaking, corrupting or losing customer data. In
fact, the threat of potential violations to the integrity
and confidentiality of customer data is often cited as
one of the main barriers to the adoption of cloud ser-
vices [2, 14]. Furthermore, high-profile incidents that
involved the loss of confidentiality or integrity of cus-
tomer data [1, 4] and the growing amount of security-

sensitive data that is outsourced to the cloud [3, 6] only
heightens such concerns.

Recently, several proposals [21, 39, 45] have advo-
cated leveraging trusted computing technology to help
build cloud services that are more resilient to the vi-
olation of the integrity and confidentiality of customer
data. This technology relies on specialized hardware –
typically a Trusted Platform Module (TPM) chip [16] –
that could be deployed on every node that is part of the
cloud infrastructure. Each TPM chip stores on its die a
strong identity (unique key) and a fingerprint (hash) of
the software stack that booted on the cloud node. TPMs
can be used to restrict the upload of customer data to
cloud nodes whose identity or fingerprint are consid-
eredtrusted. This capability offers a building block in
the design of trustworthy cloud services that provides
customers better guarantees for protecting the confiden-
tiality and integrity of their data against insiders, or con-
fining their data location within desired geographical or
jurisdictional boundaries.

Despite their benefits, the current trusted computing
abstractions are ill-suited for the requirements of cloud
services, and this increases the burden of adoption of
such technology in the cloud. This is because TPM
abstractions were designed for protecting data and se-
crets on a standalone machine, and, consequently, they
are cumbersome to use in a multi-node datacenter en-
vironment, in which data can be migrated across mul-
tiple nodes. In addition, TPM abstractions force the
cloud infrastructure to be over-exposed, since they re-
veal the identity and software fingerprint of individual
cloud nodes, which external agents could use to exploit
vulnerabilities in the cloud infrastructure or gain busi-
ness advantage [34]. Furthermore, the current TPM im-
plementation of these abstractions is inefficient, which
can introduce scalability bottlenecks to cloud services.

This paper presents Excalibur, a system that provides
the designers of cloud services with new trusted com-
puting abstractions that overcome these barriers. These
abstractions can be used as a key building block for the
construction of services that offer better guarantees re-
garding the integrity, confidentiality, or location of cus-
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tomer data. The design of Excalibur includes two main
innovations, which are crucial to overcoming the con-
cerns with using TPMs in the cloud.

First, Excalibur provides a new trusted computing ab-
straction calledpolicy-sealed data, that allows customer
data to be encrypted to a customer-chosen policy and
guarantees that only the cloud nodes whose configu-
ration satisfies that policy can decrypt and retrieve the
data. We devised this abstraction in a way that addresses
the limitations of current TPM abstractions. Since it al-
lows policies to be specified using human readable at-
tributes, policy-sealed data hides the low-level identities
and software fingerprints of nodes. Moreover, it allows
for data to be flexibly accessed by multiple nodes with
or without identical configurations as long as they sat-
isfy the customer policies.

Second, Excalibur implements the policy-sealed data
abstraction in a way that overcomes the inefficiency hur-
dles of current TPMs and scales to the demand of cloud
services. For this, we design a centralizedmonitor that
checks the integrity of cloud nodes and acts as a sin-
gle point-of-contact for customers to bootstrap trust in
the cloud infrastructure. To prevent the potential scala-
bility challenges associated with a centralized monitor,
we designed a set of distributed protocols to efficiently
implement the new abstractions. Our protocols use the
Ciphertext Policy Attribute-Based Encryption (CPABE)
encryption scheme [10] which drastically reduces the
communication needs between the monitor and the pro-
duction nodes. With our protocols, each node needs
to contact the monitor only once during a boot cycle,
a relatively infrequent operation. We also demonstrate
the correctness of Excalibur’s cryptographic protocols
by using a protocol verifier [11].

To demonstrate the practicality of Excalibur, we built
a proof-of-concept compute service akin to EC2. Our
new service is based on the Eucalyptus open source
cloud management platform [31] and leverages Excal-
ibur to give users better guarantees regarding the type
of hypervisor, or the location where their VM instances
run. Our experience shows that Excalibur’s primitive is
simple and versatile: we made minimal modifications to
the Eucalyptus codebase to integrate Excalibur into the
service.

Our evaluation suggests that Excalibur scales well.
Due to CPABE, the monitor’s load is independent of the
workload. In addition, one server acting as a monitor
is sufficient to manage a large cluster; for example, a
server would take∼15 seconds to check the node con-
figurations of a cluster with 10K nodes, if they were to
all reboot simultaneously. Finally, offering trusted com-
puting guarantees to the EC2-like service adds a modest
overhead during VM management operations only.

2 Brief primer on trusted computing and
TPMs

Trusted computing technology provides the hardware
support to bootstrap trust in a computer [33]. In particu-
lar, this technology can enable a remote user to check
whether a computer is trustworthy by verifying what
software platform has been booted on the machine. This
feature is crucial for checking the integrity of systems
that have been designed to protect the confidentiality
and integrity of data [19,28].

Trusted computing requires the presence of special
hardware on a computer, and provides the system de-
signers with four main abstractions: strong identities,
trusted boot, remote attestation, and sealed storage.
Strong identitiesallow the computer to be uniquely iden-
tified without having to trust the OS or the software run-
ning on the computer.Trusted bootproduces a unique
fingerprintof the software platform running on the com-
puter which consists of hashes of the software platform
components (e.g., BIOS, firmware controlling the com-
puter’s devices, bootloader, OS) computed at boot time.
This fingerprint can be securely reported to a remote
party using aremote attestationprotocol, which allows
the remote party to authenticate both the computer and
the software platform so that it can assess whether the
computer is trustworthy. Finally,sealed storageallows
the system to protect persistent secrets (e.g., encryption
keys) from an attacker with the ability to reboot the ma-
chine and install a malicious OS that can inspect the
disk. For this, the secrets are encrypted in such a way
that they can only be decrypted by the same computer
running the trusted software platform specified upon en-
cryption.

The most common special hardware used to imple-
ment these trusted computing abstractions is a chip
called the Trusted Platform Module (TPM) [16]. A TPM
is a secure co-processor, which is widely deployed on
desktops, laptops and increasingly on servers. A TPM
offers a strong identity which can be provided by an
Attestation Identity Key (AIK). To keep track of the
hash values that constitute a fingerprint, the TPM uses
special registers called Platform Configuration Regis-
ters (PCRs). Whenever a reboot takes place, the PCRs
are reset and updated with new hash values. To assist
remote attestation, the TPM can issue aquote, which in-
cludes the PCR values signed by the TPM with an AIK.
For sealed storage, the TPM offers two primitives called
sealandunseal, to encrypt and decrypt secrets, respec-
tively. Seal encrypts the input data and binds it to the
current set of PCR values. This allows the unseal prim-
itive to validate the identity and fingerprint of the soft-
ware platform before decrypting sealed data.
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3 The case for policy-sealed data
This section makes the case for a new trusted computing
abstraction calledpolicy-sealed datadesigned to serve
the needs of cloud computing. Before describing our
abstraction, we start by discussing the limitations of ex-
isting TPM abstractions in the context of the design of a
trustworthy cloud service.

3.1 Strawman design of a trustworthy
cloud service

When applied to the cloud, trusted computing is a cru-
cial block for building trustworthy cloud services —
cloud services that offer guarantees to customers. For
example, a trustworthy cloud service akin to Amazon’s
EC2 could provide better protections against inspection
or corruption of customers’ VMs by a cloud administra-
tor.

The research community and industry are already
designing systems that offer such guarantees buton
a single node only. For example, a recent research
project [45], called CloudVisor, retrofits Xen in such
a way that the hypervisor guarantees the integrity and
confidentiality of the data and software running in guest
VMs. A customer can leverage the TPM’s remote attes-
tation abstraction to verify that a cloud node is running
CloudVisor before uploading data to the cloud.

However, such a verification step only checks these
guarantees for the cloud node where the data is uploaded
first. Once in the cloud, the customer’s data and VMs are
often migrated from one node to another, or suspended
to disk and resumed at a later point in time. To offer
end-to-end protection, these checks must be performed
throughout these multiple stages.

To accommodate VM migration, a strawman design
of a trustworthy EC2 would perform remote attestation
each time a customer’s VM is migrated to verify that
1) the destination node’s identity is signed by the cloud
provider, and 2) the fingerprint matches that of CloudVi-
sor. To protect the VM upon suspension to disk, the VM
state must be encrypted using sealed storage before sus-
pending the VM onto disk. This design confines VMs
to cloud nodes running CloudVisor, thereby keeping the
VMs safe from the actions of cloud administrators.

3.2 Limitations of TPM abstractions
Current TPM abstractions are not well suited for build-
ing trustworthy cloud services similar to the strawman
design described above. Their limitations are funda-
mental – TPMs were designed to offer guarantees about
one single computer. In particular, TPMs suffer from
three major problems when used for building trustwor-
thy cloud services.

First, the sealed storage abstraction is not designed
for a distributed and dynamic environment like the dat-

acenters where cloud services operate. In particular, it
precludes the application developer from encrypting and
storing sensitive data in an untrusted medium (e.g., a lo-
cal hard drive, or Amazon S3 service) and retrieving it
on a different node or the same node running a differ-
ent trustworthy configuration, without knowing the fu-
ture configuration at encryption time. In the previous
example, one might be interested in suspending the VM
to disk and resume it at a later point on a different node
(e.g., if in the meanwhile the original node had been shut
down for saving power) or on the same node running a
different configuration (e.g., if in the meanwhile the hy-
pervisor had been upgraded to a more recent version).

Second, today’s TPMs are not built for high perfor-
mance. TPMs can only execute one command at a time,
and many TPM commands, such as remote attestation,
take approximately one second to complete. This ineffi-
ciency hampers the scalability of cloud services that use
the TPM, and can even open avenues for denial of ser-
vice attacks if the TPM abstractions are accessible by
customers.

Finally, the cloud infrastructure may be severely over-
exposed. By revealing TPM node identities and allow-
ing customers to remotely attest the nodes, any outsider
could learn, for instance, 1) the number of cloud nodes
that constitute the infrastructure of the cloud provider,
and 2) the distribution of different platforms they run.
This information could be used by external attackers to
trace vulnerabilities in the infrastructure, or by competi-
tors to learn business secrets. Handing over such infor-
mation is often unacceptable to cloud providers.

3.3 The policy-sealed data abstraction

To overcome these limitations, we propose a new ab-
straction aimed at building trustworthy cloud services
calledpolicy-sealed data. This abstraction allows cus-
tomer data to be bound to cloud nodes whose configu-
ration is specified by a customer-defined policy. Policy-
sealed data offers two primitives for securing customer
data:sealandunseal. Seal can be invoked anywhere –
either on the customer’s computer or on the cloud nodes.
It takes as input the customer’s data and apolicy and
outputs ciphertext. The reverse operation, unseal, can
be invoked only on the cloud nodes that need to decrypt
the data. Unseal takes as input the sealed data, and de-
crypts it,if and only if the node’s configuration satisfies
the policy used upon seal; otherwise decryption fails.

With our abstraction, each cloud node has a configu-
ration, which is a set of human-readableattributes. At-
tributes express features that can refer to the software
(e.g., “vmm”, “version”) or to the hardware (e.g., “lo-
cation”) of a node. A policy expresses a logical condi-
tion over the attributes supported by the provider (e.g.,
“vmm=Xen and location=US”). Table 1 gives an exam-
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Attribute Value Description
service “EC2” service name
version “1” version of the service
vmm “Xen”, “CloudVisor” virtual machine monitor
type “small”, “large” resources of a VM
country “US”, “DE” country of deployment
zone “Z1”, “Z2”, “Z3”, “Z4” availability zone

Table 1: Example of attributes of a service.Suppose EC2
supports two types of VM instances, two types of VMMs, and
four availability zones (datacenters) in the US and Germany.

Node Configuration
N service: “EC2” ; version: “1” ; type : “small” ; country

: “DE” ; zone: “Z2” ; vmm : “CloudVisor”

Table 2: Example of a node configuration.Contains the val-
ues for the attributes that characterize the hardware and soft-
ware of a specific nodeN .

Policy Policy Specification
P1 service= “EC2” and vmm = “CloudVisor” and

version= “1” and instance= “large”
P2 service= “EC2” and vmm = “CloudVisor” and

(zone= “Z1” or zone= “Z3”)
P3 service= “EC2” and vmm = “CloudVisor” and

country= “DE”

Table 3: Examples of policies:P1 expresses version and VM
instance type requirements,P2 specifies zone preference for
different sites, andP3 expresses a regional preference.

ple of the attributes of a hypothetical deployment of a
service akin to EC2. Table 2 illustrates the configuration
of a particular node, and Table 3 lists example policies
over node configurations in that deployment.

Our primitive can replace the existing remote attesta-
tion and sealed storage calls for securing customer data
on the cloud. In particular, to protect data upon upload
or migration, the customer only needs to seal the data to
a policy: if the destination cannot unseal the data then
its configuration does not match the policy and therefore
the node is not trustworthy to the needs of the customer
who originally specified the policy.

Policy-sealed data addresses the limitations of stan-
dard TPM abstractions. First, data can be moved flexi-
bly among the nodes that satisfy the same customer pol-
icy. Attributes can express a large variety of software
and hardware configurations independently of the cloud
service model, and policies let customers express their
preferences using rich attribute expressions. Second, we
will show how policy-sealed data can be implemented in
an efficient manner bypassing the TPMs’ performance
limitations. Finally, our abstraction prevents infrastruc-
ture overexposure because it hides the nodes’ individual
TPM-based identities and fingerprints.

4 Excalibur design
This section presents Excalibur, a system that enables
the design of trustworthy cloud services by providing
policy-sealed data support. The intuition behind its de-
sign is simple: it is based on a centralized component
called amonitor, which maps the abstractions used by
policy-sealed data to the TPM-based identities and fin-
gerprints. This design aspect is important because only
the monitor will trigger TPM primitives on the cloud
nodes, thus minimizing their negative performance im-
pact. Though this fundamental design choice is simple,
we still need to overcome two significant challenges: 1)
to cryptographically enforce policies in a scalable, fault
tolerant and efficient way, and 2) to assure customers
that the monitor operates correctly despite the fact that
it is managed by untrusted cloud administrators. To ad-
dress these challenges we 1) use CPABE cryptography
to enforce policies, and 2) devise certificates and a scal-
able monitor attestation mechanism to ensure that the
monitor is trustworthy.

Next, we outline our assumptions. Then, we present
an overview of Excalibur and show how we address the
two design challenges above.

4.1 Assumptions and threat model
We consider that the cloud provider’s employees respon-
sible for administering the cloud infrastructure may be-
have erroneously. Such actions may result in leakage
or corruption of customer data or computations. The
causes for misbehavior may range from negligence (e.g.,
not applying security patches) to malice (e.g., theft of
customer data). This motivates our adoption of an ad-
versarial model, which contemplates the worst case sce-
nario of an administrator actively trying to access cus-
tomer data located on the cloud nodes. However, we
differentiate physical from remote attacks.

Regarding physical attacks, which could compromise
the correctness of TPMs, we assume that these are out-
side the reach of the attacker. The rationale is that
providers already secure their premises. In particular,
hardware in the cloud is put under sharp surveillance and
restricted access control policies. In certain situations,
physical accessis even completely disallowed [18].

Our focus is on attacks that can be performed re-
motely, which are far easier to perpetrate. In fact, cloud
nodes are normally managed remotely through a man-
agement interface, which comprises the interface ex-
posed by the software platform running on the node
(e.g., the ability to login), and a dedicated interface for
tasks like power cycling. The management interface
gives an administrator great power to access customer
data on the cloud nodes: e.g., it can reboot any node,
access its local disk after rebooting, and install arbitrary
software platforms on the node. We thus assume that the
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Figure 1: Excalibur deployment: The dashed lines show the
flow of policy-sealed data, and the filled lines represent inter-
actions between clients and the monitor. The monitor checks
the configurations of every cloud node. The customer starts by
attesting the monitor to check its integrity, and seals the data.
The data can only be unsealed on nodes that satisfy the policy
(represented by unshaded boxes).

attacker has remote access to the management interface
of every cloud node and can also eavesdrop the network.

The software platforms that implement a trustwor-
thy cloud service must satisfy three properties. First,
the management interface exposed to cloud administra-
tors must prevent operations that could lead to leakage
or corruption of sensitive data on the node (e.g., direct
memory inspection of VM memory). Second, a soft-
ware platform should be able to protect sensitive data
(e.g., key material) in volatile memory so that they are
destroyed upon reboot; we rely on this feature for pro-
tecting some credentials that the monitor sends to the
nodes. Third, the software platform must be crafted to
force a reboot whenever the software platform changes
(e.g., system upgrades); this operation ensures that the
fingerprint stored in the TPM is consistent with the cur-
rent state of the system. These properties can be en-
forced by making use of existing systems and hardening
techniques [19, 22, 29, 45], and therefore this does not
constitute the focus of this paper.

We assume that cloud providers themselves are not
malicious, since it is in their best interest to leverage
trusted computing to improve the security of their ser-
vices. In particular, cloud providers will deploy a TPM
chip on every cloud node.

4.2 System overview

Figure 1 illustrates the deployment of Excalibur in the
cloud. Excalibur comprises two components: aclient
and amonitor. The client consists of a library that al-
lows the implementation of a trustworthy cloud service
to use the policy-sealed data primitives. This library can
be used both at the customer-side (e.g., before upload-
ing data), and by the software platforms running on the

cloud nodes (e.g., before migrating data between nodes).
Note that the customer-side client does not expose the
unseal primitive; since the notion of a configuration only
applies to cloud nodes, it only makes sense to invoke
unseal on these nodes. With policy-sealed data, a trust-
worthy cloud service can then confine customer data to
the nodes deemed trustworthy by the customers.

The monitor is a dedicated service running on ei-
ther a single or a small set of cloud nodes. It forms
the core of Excalibur since it coordinates the enforce-
ment of policy-sealed data on the entire cloud infras-
tructure. It maps TPM identities and fingerprints of the
cloud nodes to policy-sealed data attributes. Whenever
a cloud node reboots, the monitor runs a special remote
attestation protocol to obtain the fingerprint and identity
of the node, and translates these to a node configura-
tion by consulting an internal database. The node con-
figuration, which expresses physical characteristics like
hardware or location and software features of the node
as a set of attributes, is then encoded as credentials that
are then sent to the node. These credentials are required
by cloud nodes for unsealing policy-sealed data, and are
destroyed whenever the nodes reboot.

The monitor exposes a narrow management interface
that allows the cloud administrator to configure the map-
pings between attributes and identities / fingerprints.
This is necessary for the regular maintenance of the sys-
tem as new software platforms and cloud nodes are de-
ployed on the infrastructure. The management interface
also allows multiple clones of the monitor to be securely
spawned in order to scale up the system. To assure
customers that the monitor is properly maintained, the
monitor only accepts mappings that are vouched for by
specialcertificates, and customers can directly attest the
monitor in order to check its authenticity and integrity.
Provided that customers trust the issuers of certificates,
then the service is trustworthy.

Next we describe how we address the two main de-
sign challenges: scalable and efficient enforcement of
policies, and customer trust bootstrap via the monitor.

4.3 Cryptographic enforcement of policies
The monitor needs to coordinate the cryptographic en-
forcement of the seal and unseal primitives. In partic-
ular, the data encrypted upon seal should only be de-
crypted upon unseal by the nodes whose configuration
satisfy the policy used to seal the data. The main imple-
mentation challenge is avoiding scalability bottlenecks.

One possibility, which corresponds to the choice we
had made in a preliminary design for this system, is for
the monitor itself to evaluate the policies: upon sealing,
the client encrypts the data with a symmetric key and
sends this key and the policy to the monitor; then the
monitor encrypts this key and the policy with a secret
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key, and sends the outcome back to the client. Upon un-
sealing, the encrypted key is sent to the monitor, which
internally recovers the original symmetric key and pol-
icy, evaluates the policy, and releases the symmetric key
if the node satisfies the policy. Although this solution
implements the necessary functionality, it involves the
monitor in every seal and unseal operation, which intro-
duces a scalability bottleneck.

A second design is to evaluate the policies at the client
side using public-key encryption. Each cloud node re-
ceives from the monitor a set of private keys that match
its configuration, in which each key corresponds to an
attribute-value pair of the configuration. Sealing is done
by encrypting the data with the corresponding public
keys according to the attributes defined in the policies.
This solution avoids the bottlenecks of the first approach
because all cryptographic operations take place at the
client side, which alleviates the pressure on the moni-
tor. The main shortcoming is that, in practice, it compli-
cates key management due to the number of key-pairs
that nodes need to handle in order to reflect all possible
attribute combinations that can be used in policies.

4.3.1 The need for Attribute-Based Encryption

To address these problems, we use a cryptographic
scheme called Ciphertext Policy Attribute-Based En-
cryption (CPABE) [10], which works as follows. It
starts with the generation of a pair of keys: a public
encryption keyand a secretmaster key. Unlike tradi-
tional public key schemes, the encryption key allows
a piece of data to be encrypted and bound to a policy.
A policy is a logical expression using conjunction and
disjunction operations over a set of terms. Each term
tests a condition over an attribute, which can be a string
or a number; both types support the equality operation,
but the numeric type also supports inequality operators
(e.g.,a = x or b > y). CPABE can then create an ar-
bitrary number ofdecryption keysfrom the same master
key, each of which can embed a set of attributes spec-
ified at creation time. The encrypted data can only be
decrypted by a decryption key whose attributes satisfy
the policy (e.g., keys embedding the attributea = x can
decrypt a piece of data encrypted with the example pol-
icy above).

Excalibur uses CPABE to encode the runtime config-
urations of the cloud nodes into decryption keys. At
setup time, the monitor generates a CPABE encryption
and master key pair, and keeps the master key securely.
Whenever the monitor checks the identity and software
fingerprint of a cloud node, the monitor sends the appro-
priate credentials to the node, which include a CPABE
decryption key embedding the attributes that correspond
to the configuration of the node; the decryption key is
created from the master key, and forwarded to all the

nodes featuring the same configuration. Sealing and un-
sealing are done by encrypting the data using the en-
cryption key and a policy, and decrypting the sealed data
using the decryption key, respectively. The data can only
be unsealed by nodes that satisfy the specified policy.
The monitor protects the master key by 1) ensuring that
the master key cannot be released through the monitor’s
management interface, and 2) encrypting the master key
before storing it on disk as described in Section 5.3.

The benefits of this solution are twofold. First, it al-
lows the system to scale independently of the workload
since the seal and unseal primitives do not interact with
the monitor, but run entirely at the client side. Second, it
allows for expressive policies directly supported by the
CPABE policy specification language while only requir-
ing two keys – the CPABE encryption and decryption
keys – to be sent to the nodes. The price to pay for using
CPABE is a performance hit when compared to tradi-
tional cryptographic schemes. In Section 5 we explain
how this impact is minimized.

4.4 Trusting the monitor

Since the monitor is managed by the cloud adminis-
trator, the mismanagement threats that affect any cloud
node could also affect the monitor. Thus a second chal-
lenge is to ensure that the monitor operates correctly,
and to efficiently convey this guarantee to customers.

To achieve this, we first need to prevent the moni-
tor from accepting flawed attribute mappings. For ex-
ample, a mapping would be flawed if the attribute “lo-
cation=DE” were mapped to the identity of a node lo-
cated in the US, or if the attribute “vmm=Xen” were
mapped to the fingerprint of CloudVisor. To prevent
this, the monitor only accepts attribute mappings that are
vouched for by acertificate. A certificate is issued by
one or multiplecertifiers, which have the responsibility
of validating the correctness of mapping. For example a
certifier would check the location of the nodes, and the
fingerprints of the software platforms. This role could
be played by the provider itself, or by external trusted
parties akin to Certification Authorities.

Since anyone can issue certificates, the monitor must
inform the customers about the identity of the certifier so
that they can judge whether the certifier is trustworthy,
and thereby be confident that the attribute mappings are
correct. Nevertheless, even if the certifier is trustwor-
thy, the system must provide further guarantees about
the authenticity and integrity of the monitor: only in this
case can the customer be sure that the certificate-based
protections and the security protocols implemented by
the monitor are correct. To provide this guarantee, cus-
tomers can directly attest the monitor. To perform this
attestation, customers must obtain 1) the identity and
fingerprint of the monitor using remote attestation, and
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2) a certificate that validates that the identity belongs to
a cloud node owned by the provider and that the finger-
print is of a trustworthy monitor implementation. If both
conditions hold, it it safe to trust the monitor.

However, this solution raises a scalability issue, since
the maximum throughput of a monitor clone equipped
with a single TPM would be in the order of one attes-
tation per second. This is clearly insufficient to cope
with the demand of a cloud service, even if we spawn a
reasonable number of monitor clones. To make this so-
lution scalable, we employ a technique based on Merkle
trees for batching a large number of attestation requests
into a single TPM quote which we detail in Section 5.

5 Detailed design
This section describes how Excalibur enables building
trustworthy cloud services by providing policy-sealed
data support. We first introduce the certificates, which
constitute the root-of-trust of the system. We then de-
scribe the interfaces offered by Excalibur for building
cloud services and managing the system. Finally we
present the security protocols that enforce policy-sealed
data.
Notation. For CPABE keys,KM, KE andKD denote
master, encryption, and decryption keys, respectively.
For asymmetric cryptographyK andKP denote private
and public keys, respectively. For symmetric keys we
drop the superscript. Notation〈x〉K indicates datax en-
crypted with keyK, and{y}K indicates datay signed
with keyK. We represent nonces asn. Session keys and
nonces are randomly generated. NotationD, P , E, and
M denote data, policy, envelope, and manifest; these
terms are clarified in Section 5.2.

5.1 Certificate specification
Excalibur uses certificates to validate the mappings be-
tween the attributes specific to a trustworthy cloud ser-
vice and the identities / fingerprints of cloud nodes. Cer-
tificates are used both by the monitor to check the con-
figuration of cloud nodes and attest new monitor clones,
and by the customer-side client to attest the monitor.
Our certificate specification aims to support multiple
certifiers, since a single certifier may not have the ex-
pertise to assess all the attributes of the cloud service,
or simply because the provider might be willing to hire
multiple certifiers in order to reinforce customers’ trust.
Provided that customers trust the certifiers that issued
the certificates, they can be sure that the mappings are
correct, and thus policy-sealed data is properly enforced.

To meet the needs of our security protocols and sup-
port multiple certifiers, we allow individual attributes
to be independently vouched for by different certifiers
(e.g., just the VMM model or the location). As a result,
certificates form a hierarchical tree like in the example

Figure 2: Example certificate tree. This covers an infras-
tructure that comprises two clusters with three nodes each,and
three software platforms. Provider P certifies the service,cer-
tifier A the location of nodes, and certifier B their software
fingerprints. The certificates in light colored boxes form the
manifest; it validates the monitor’s authenticity and integrity.

shown in Figure 2. This shows how a provider P can use
the certificates that correspond to the internal nodes in
the tree to delegate the certification of different attributes
to two different certifiers, A and B. Additionally, each
leaf in the certificate tree vouches for a mapping be-
tween the attributes that appear in node configurations
and the low-level measurements, namely software fin-
gerprints (PCRs) or hardware identities (AIK keys).

5.2 System interfaces
The interface of Excalibur can be divided into two parts:
a service interfaceto support the implementation of
cloud services, and amanagement interfaceto allow
cloud administrators to maintain the system.

The service interface exported by the client library
consists of the three operations summarized in Table 4.
Before the data can be sealed at the customer-side, the
attest-monitormust be invoked to check the authentic-
ity and integrity of the monitor. It returns the encryption
keyKE needed for sealing and amanifestM which con-
sists of a set of certificates that are necessary and suf-
ficient for validating the identity and fingerprint of the
monitor (see Figure 2). The manifest is passed to the
customer, who can learn which attributes can be used in
policies, and identify the provider and certifiers so that
the customer can decide whether the service is trustwor-
thy. Since the local client saves the manifest and encryp-
tion key for sealing, this operation only needs to be done
the first time the cloud service is used.

The core primitives aresealandunseal. Seal can be
invoked by both cloud nodes and customers, and it takes
the encryption keyKE, a policy P , and the dataD,
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attest-monitor(mon-addr) → (KE, M) or FAIL
seal(KE, P, D) → E = 〈P, D〉K, 〈K〉KE

unseal(KE, KD, E) → (D, P ) or FAIL

Table 4: Excalibur service interface.

and produces an envelopeE. This envelope is passed
to unseal, which returns the decrypted dataD or fails
if its caller does not satisfy the policy. In addition to
the decryption keyKD, unseal receives as an argument
the encryption keyKE, which is required by CPABE
decryption; the cloud node that invokes unseal must ob-
tain these keys from the monitor. Unseal also returns
the original policyP , so that a cloud node can re-seal
the data with the customer’s policy. The language for
expressing policies is the CPABE policy language.

The management interface allows the cloud adminis-
trator to remotely maintain the monitor using a console.
Its main operations allow for initializing the system,
managing certificates, and spawning monitor clones.

5.3 System initialization
For a trustworthy cloud service to take advantage of
policy-sealed data, the monitor must be initialized by
binding a unique CPABE key pair to the service. To do
this, the cloud administrator loads the certificates that
validate the attributes of the service into the monitor, and
instructs the monitor to generate the key pair. If these
certificates form a consistent certificate tree, the moni-
tor creates unique encryption and master keys, and binds
them to the root certificate of the tree (see Figure 2). To
allow for maintenance of the system, the administrator
can remove or add certificates as long as they form a
valid certificate tree.

The monitor maintains its persistent state in acer-
tificate database, and akey database. The certificate
database contains the certificates loaded into the moni-
tor. The key database contains all the CPABE keys. To
secure the key material, the key database is sealed us-
ing the TPM seal primitive, which ensures that the key
database can only be accessed under a trustworthy mon-
itor configuration in case the monitor reboots.

Once the setup is complete, the monitor can check the
configurations of cloud nodes, as explained below.

5.4 Node attestation protocol
The main task of the monitor is to deliver credentials
to each cloud node reflecting the node’s boot time con-
figuration, which allow the node to unseal and re-seal
data. The goal of the node attestation protocol is to de-
liver these credentials securely. Recall that, under our
assumptions, when a cloud node reboots, the credentials
kept by the node in volatile memory will be lost. There-

Monitor Node
1. AIKP

node

2. n

3. {n, PCRnode, K
P

session}AIKnode

4a. OK, 〈KE, KD〉KP

session4b. FAIL

Figure 3: Node attestation protocol.

fore this protocol must be executed each time a cloud
node reboots, so it can obtain a fresh credential.

To deliver the credentials to a node, the monitor starts
by obtaining a quote from the node signed by the node’s
AIK and containing the current PCRs. Then, the mon-
itor looks in the certificate database for certificates that
match the node’s PCRs and AIK. If any are found, the
monitor obtains the node configuration by joining all the
attributes of the matching certificates onto a list similar
to the one shown in Table 2. Next, the monitor sends
the node the credentials, which include the encryption
key, and the decryption key embedding these attributes.
Since generating a new decryption key is expensive,
the monitor caches these keys in the key database, and
shares the same decryption key among the nodes with
similar configuration.

Figure 3 shows the precise messages exchanged be-
tween the monitor and the customer-side client. The
protocol is based on a standard remote attestation in
which a noncen is sent to the node (message 2), and
the node replies with a quote (message 3); the nonce is
used to check the freshness of the attestation request.
We introduce a first message, sent by the node after it
boots up, to request credentials. Message 3 includes a
session keyKP

session, which will be used in message 4 for
securely sending credentialsKE andKD to the node.

A noteworthy aspect of this protocol is that the node
does not need to authenticate the monitor to preserve
the security of policy-sealed data. In the worst case, a
node may receive a compromised decryption key from
an attacker. However, given that customers seal their
data with the encryption key obtained from the legiti-
mate monitor, the data can only be unsealed by a de-
cryption key generated from the master key owned by
the legitimate monitor; this property is guaranteed by
CPABE. As a result, the attacker cannot compromise the
customer’s data. Next, we show how the customer ob-
tains the encryption key from the legitimate monitor.

5.5 Monitor attestation protocol
The monitor attestation protocol is triggered by the
attest-monitoroperation and allows customers to detect
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Figure 4: Batch attestation example:The tree is built from
4 nonces. A summary for noncen10 comprises its tag and the
hashes in the path to the root.

if the monitor is legitimate by checking its authenticity
and integrity. In addition, this protocol obtains 1) the en-
cryption key, which is used for sealing data, and 2) the
set of certificates that form the manifest, which lets the
customer check the identity of certifiers and learn about
the attributes available in the service. The monitor is le-
gitimate if its identity and fingerprint are validated by
the manifest.

The main challenge in designing this protocol is scal-
ability. To validate the monitor, the customer-side client
must obtain a fresh quote from the monitor’s TPM. The
quote contains the monitor’s PCRs and a nonce sent by
the customer-side client for freshness; both elements are
signed by the monitor’s AIK. However, since this proto-
col depends on a fresh nonce signed in the TPM, the
attestation throughput would be very low, which creates
a scalability bottleneck as multiple customers run the
protocol concurrently.

To overcome this problem, we need to batch multiple
attestation requests into a single quote operation. More
precisely, we want to allow the monitor to quote a batch
of N noncesni expressed as an aggregate hashh(nN

i=0
),

and yet send evidences(ni) to each customer-side client
that its nonceni is included in the aggregate hash.

To make the protocol network efficient when sending
the evidence back to customers, the produced evidence
must be significantly smaller than the accumulated batch
of nonces. For this purpose, we use a Merkle tree as il-
lustrated in the example of Figure 4. While the monitor
TPM is busy processing a batch of requests, the moni-
tor accumulates the nonces sent by multiple customers.
As soon as the TPM becomes free, the monitor builds
a Merkle tree where the leaves hold the nonces of the
batch, each inner node is a hash of the concatenated
children, and the head is the aggregate hashh(n). The
monitor quotes the TPM with the aggregate hash. When
quote finishes, the monitor creates a summarys(n) of
sizeO(log(N)) for each nonce, and sends each sum-
mary to the respective customer-side client. To validate
the freshness of the quote, a client takes its noncen and
the received summarys(n), recomputes the aggregate

Monitor Customer-side
1. n

2. s(n), AIKP

mon, {h(n), M, KE, PCRmon}AIKmon

Figure 5: Monitor attestation protocol.

hash, and compares the result with the receivedh(n).
This allows the monitor to efficiently accumulate many
attestation requests into a single quote, which increases
throughput dramatically.

We now explain the precise monitor attestation pro-
tocol shown in Figure 5. In the first message, the
customer-side client sends noncen for freshness, and
then uses the information returned in message 2 to val-
idate the monitor in two steps. First, it checks in the
manifestM for the certificates with attribute “monitor”,
and uses them to authenticate the monitor keyAIKP

mon,
and to validate the fingerprint of the monitor’s software
platformPCRmon (see Figure 2). Second, to validate the
freshness of the received messages, it uses noncen and
the summarys(n) to compare against the aggregate hash
h(n) produced by batch attestation. If all tests pass, the
monitor is trustworthy, and the encryption keyKS is au-
thentic. The customer can then seal data safely.

5.6 Seal and unseal protocols
Thanks to the use of CPABE, invoking seal and unseal to
respectively encrypt and decrypt data can be done with-
out having to further contact the monitor (see Table 4).

In implementing these primitives we take into account
two aspects of CPABE related to performance and func-
tionality. First, since CPABE is significantly more in-
efficient than symmetric encryption, seal encrypts the
data with a randomly generated symmetric key, and uses
CPABE to encrypt the symmetric key. Second, given
that CPABE decryption does not return the original pol-
icy, which unseal must return to allow cloud nodes to
re-seal the data, we include the original policy in the en-
velope along with a digest for integrity protection.

5.7 Clone attestation protocol
To elastically scale the monitor, the cloud administra-
tor can create multiple monitor clones. In creating a
new clone, an existing monitor instance must share the
CPABE master key with the new clone so that the latter
can generate and distribute decryption keys to the cloud
nodes. However, this can only be done if the new clone
can be trusted to secure the key and to comply with the
specification of Excalibur protocols.

To enforce this condition, the existing monitor in-
stance and the clone candidate run a clone attestation
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protocol analogous to the one shown in Figure 3, but
with two differences. First, after message 3, the moni-
tor checks if the candidate is trustworthy by checking if
the candidate’s AIK and PCR values map to the “mon-
itor” attribute contained in the manifest; if not, cloning
is aborted. Second, if the test passes, the monitor autho-
rizes cloning, and sends the master key, the encryption
key, and a digest to the candidate. The digest identifies
the head of the certificate tree associated with the keys.
The new clone refrains from using the keys until the ad-
ministrator uploads the corresponding certificates to it.

6 Implementation
We implemented Excalibur in about 22,000 lines of C
code. This includes the implementation of the moni-
tor, a client-side library providing the service interface,
a client-side daemon for securing the CPABE decryp-
tion key on the cloud nodes, a management console, and
a certificate toolkit for issuing certificates. The console
communicates with the monitor over SSL, and all other
protocols use UDP messages. We use the OpenSSL
crypto library [32] and the CPABE toolkit [7] for all
our cryptographic operations, and the Trousers software
stack and its related tools [43] to interact with TPMs.

6.1 Example cloud compute service
We extended an existing cloud service to use Excalibur
in order to examine two issues. First, we wanted to un-
derstand the effort it would take to adapt existing cloud
services to use Excalibur. Second, we wanted to use our
implementation to estimate the performance impact of
integrating Excalibur into cloud services.

The example cloud service we decided to adapt is
an elastic VM service where customer VMs can be de-
ployed in compute clusters in multiple locations, sim-
ilar to the EC2 service from Amazon. Our extension
uses Excalibur to enable a customer to gain better assur-
ance that its VMs will not be accidentally or intention-
ally moved outside of the provider’s compute cluster in
a certain area (e.g., the EU).

To build such a service, we started from Eucalyp-
tus [31], which is an open source system that provides
an elastic VM service with an interface compatible to
that of Amazon EC2. It consists of several subsystems
for controlling the allocation of virtual machines. Each
node runs a virtual machine monitor (VMM) for hosting
the VMs, which Eucalyptus coordinates centrally. Eu-
calyptus supports various VMMs, but we used Xen [8]
because it is open source.

To implement the confinement of VM placement we
modified Xen to invoke seal and unseal when the cus-
tomer’s VM is created on a new node, migrated from
one node to another, or suspended on one node and re-
sumed on another. An attempt to migrate the VM to a

1324 sock.send( ” r e c e i v e\n” )
1325 sock.recv(80)
1326
1327 pipe = subprocess.Popen( ” / xen−/b i n / s e a l ”,
1328 stdin=subprocess.PIPE,
1329 stdout=sock.fileno())
1330 fd_pipe = pipe.stdin.fileno()
1331
1332 XendCheckpoint.save(fd_pipe, dominfo, True,
1333 live, dst)
1334 os.close(fd_pipe)
1335 sock.close()

Figure 6: Hook to intercept migration (from fileXendDo-
main.py): We redirect the state of the VM through a process
(seal.sh), which seals the data before the data proceeds to the
destination on socketsock(lines 1327-1330).

node outside the specified locations would fail, as the
node would lack the credentials to unseal the policy-
sealed VM.

Implementing these changes was relatively straight-
forward. The integration with Excalibur required mod-
ifications to Xen, in particular to a Xen daemon called
xend, which is responsible for the management of the
guest VMs on the machine and communicates with the
hypervisor through the OS kernel of Domain 0. In par-
ticular, the VM operationscreate, save, restore, andmi-
grate need to seal or unseal the VM memory footprint
whenever the VM is unloaded from or loaded to phys-
ical memory, respectively. To streamline this imple-
mentation, we took advantage of the fact thatxendal-
ways transfers VM state between memory and the disk
or the network in a uniform manner using file descrip-
tors. Therefore, we located the relevant file descrip-
tors, and redirect the operations on these file descriptors
through an OS process that seals or unseals according
to the direction of transfer. Figure 6 shows a snippet of
xendwhich illustrates this technique applied to migra-
tion. The modifications took place in the Python code
in xend. Overall, the changes toxendwere minimal: we
added/modified 52 lines of python code.

The other two changes we needed to perform con-
sisted of (i) hardening the software interfaces to pre-
vent the system administrator from invoking any oper-
ations other than the four VM management operations
listed above, and (ii) using a TPM-aware bootloader [5]
to measure the integrity of the software and to extend a
TPM register with the Xen configuration fingerprint.

Overall, adapting Eucalyptus to use Excalibur primi-
tives required little programming effort.

7 Evaluation

In this section we evaluate the correctness of Excalibur
protocols using an automated tool, and the performance
of both Excalibur and our example cloud service.
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7.1 Protocol verification
We verified the correctness of Excalibur protocols using
an automated theorem prover. We used a state-of-the-
art tool named ProVerif [11], which supports the speci-
fication of security protocols for distributed systems in
concurrent process calculus (pi-calculus).

To use the tool, we specified all the protocols used
by our system, which included all cryptographic opera-
tions (including CPABE operations), a simplified model
of the TPM identity and fingerprint, the format of all cer-
tificate types in the system, the monitor protocols, and
seal and unseal operations. In total, the specification
contains approximately 250 lines of code in pi-calculus.

ProVerif was able to prove the semantics of policy-
sealed data in the presence of an attacker with unre-
stricted access to the network. The attacker can listen
to messages, shuffle them, decompose them, and inject
new messages into the network. This model covers, for
example, eavesdropping, replay, and man-in-the-middle
attacks. ProVerif proved that whenever a customer seals
data, the resulting envelope can only be unsealed by a
node whose configuration matches the policy.

For more details about the specification and the proof,
we refer the interested reader to [30].

7.2 Excalibur performance
The performance evaluation of Excalibur has two parts.
First, we evaluate the scalability of the monitor by mea-
suring the performance overhead and throughput of its
three main activities: generating CPABE decryption
keys, delivering these keys to nodes, and serving mon-
itor attestation requests. We then measure the perfor-
mance overhead of seal and unseal operations at the
client side.

7.2.1 Experimental setup and methodology

To evaluate Excalibur’s performance, we use two dif-
ferent experimental setups. The first setup uses a two-
node testbed where one of the nodes acts as a monitor
and the other acts as a regular cloud node making re-
quests to the monitor. The second setup is used to evalu-
ate the monitor throughput for attesting cloud nodes and
serving attestation requests by customers. For attesting
cloud nodes, we simulate 1,000 nodes by using one ma-
chine acting as the monitor and five machines acting as
cloud nodes, all running parallel instances of the node
attestation protocol. For monitor attestations, we use a
single machine acting as customers running parallel in-
stances of the monitor attestation protocol. This num-
ber of nodes is sufficient to exhaust the resources of the
monitor, and to ensure that there were no bottlenecks in
the client nodes.

In both setups we use Intel Xeon machines, each
one equipped with 2.83GHz 8-core CPUs, 1.6GB of
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Figure 7: Performance of decryption key generation: time as
we vary the number of attributes (left), and throughput for 10
attributes as we vary the number of cores (right).

RAM, and a TPM version 1.2 manufactured by Win-
bond. All machines run Linux 2.6.29, and are connected
to a 10Gbps network. We repeated each experiment ten
times and reporting the median results; the standard de-
viation was negligible.

7.2.2 Decryption key generation

The overhead of generating a CPABE decryption key
depends on the number of attributes embedded in the
key. We measure the time to generate a decryption key
stemming from the same master key, in which we vary
the number of attributes from one to 50. This range
seems to be reasonable to characterize the configuration
of a node.

Figure 7 shows, on the left, the performance over-
head for generating a decryption key as a function of the
number of attributes it contains. On the right, we show
the peak throughput of key generation with 10 attributes
on a single processor using up to eight cores. The re-
sults confirm two relevant findings of the original au-
thors of CPABE. First, the overhead of generating keys
grows linearly with the number of attributes present in
the key. Second, generating CPABE keys is expensive,
e.g., a key with ten attributes takes 0.12 seconds to cre-
ate, which would correspond to a maximum rate of 8.33
keys/sec on a single core.

Although CPABE key generation is inherently ineffi-
cient, we consider that its performance is acceptable in
this context. The reason is that the throughput pressure
on the monitor is relatively low, because large groups of
machines are likely to have the same configuration. The
latency to generate a key will only be experienced by the
first node which reboots with a configuration that is new
to the monitor. Since the key is cached, it is reused in
future identical requests without additional costs.

7.2.3 Node attestation

We measured the latency of the node attestation proto-
col, and found that it takes 0.82 seconds. We also ob-
serve that the bulk of the attestation cost (96%) is due to
the node performing a TPM quote operation necessary
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Figure 8: Performance overhead of sealing and unsealing data
as a function of the complexity of the policy, with input data
of constant size (1K bytes).

for remote attestation. This result is not surprising as
TPM quote operations are known to be inefficient [27].

Since most of the work required by this protocol is
carried out by the cloud nodes, this should not repre-
sent a bottleneck to the coordinator. To confirm this, we
evaluated the throughput of the monitor when conduct-
ing multiple parallel instances of this protocol, and the
results show that the monitor can deliver up to 632.91
keys per second, which is efficient and allows a sin-
gle monitor machine to scale to serve a large number
of nodes.

7.2.4 Monitor attestation

We measured the performance of the monitor attestation
protocol. This protocols has a latency of 1.21 seconds
and a throughput of approx. 4800 reqs/sec on a sin-
gle node. The quote operation performed by the local
TPM of the monitor is responsible for the bulk of the
latency (0.82 seconds), and the remaining time is due
to cryptographic operations and network latency. The
value observed for the peak throughput is high, and is
a consequence of using batch attestation. If we disable
batching, the throughput drops sharply to 0.82 reqs/sec.
Thus, this technique is crucial to the scalability of the
monitor, delivering a throughput speedup of over 5000x.

7.2.5 Sealing and unsealing

The performance overhead of the seal and unseal oper-
ations performed by Excalibur clients is dominated by
the use of two cryptographic primitives: CPABE and
symmetric cryptography (which runs AES with a 256-
bit key size). We study the effects of each in turn.

To understand the effect of CPABE in the overall per-
formance overhead, we set the input data to be of a
small, constant size. Figure 8 shows the performance
overhead of sealing and unsealing 1KB of data as a func-
tion of the complexity of the policy.

On the left, Figure 8 shows the cost of a seal opera-
tion as a function of the number of tests contained in the
policy. For instance, policyA=x and (B=y or B=z)con-
tains three comparisons. Our findings show that the cost
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Figure 9: CPABE fraction in the performance overhead of
sealing, varying the size of the input data.
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Figure 10: CPABE fraction in the performance overhead of
unsealing, varying the size of the input data.

of sealing grows linearly with the number of attributes.
The cost of sealing for a policy with 10 attributes is
about 128 milliseconds.

On the right, Figure 8 shows the cost of an unseal op-
eration. Unlike encryption, CPABE decryption depends
on the number of attributes in the decryption key that
are used to satisfy the policy. For example, consider a
decryption key with attributesA:x andB:y, and policies
P1 : A=x, andP2 : A=x and B=y. PolicyP1 would use
one attribute, whereasP2 would use two. As before, the
performance overhead of unseal grows linearly with the
size of the policy. The time required to unseal a policy
with 10 attributes is 51 milliseconds.

To study the relative effect of CPABE in the overall
performance of Excalibur primitives, we vary the size
of the input data. Figures 9 and 10 show the fraction
of overhead caused by CPABE, and Table 5 lists the ab-
solute operation times. Our findings show that CPABE
accounts for the most significant fraction of the perfor-
mance overhead. Sealing 1 MB of data with a policy
containing 10 leaf nodes takes 134 milliseconds, and
87% of the total cost of sealing goes to CPABE encryp-
tion. For unsealing, the fraction of CPABE is slightly
lower than for sealing, but still very significant. Unseal-
ing 1 MB of data with a policy satisfying 10 attributes
of the private key takes 68 milliseconds, where 68% of
the latency is due to CPABE.

7.2.6 Summary

Our results show that the latencies of decryption key
generation and the node attestation protocol are reason-
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Data Latency (ms)
(bytes) Sealing Unsealing
1K 120 50
10K 120 49
100K 121 51
1M 134 68
10M 264 243
100M 1522 1765

Table 5: Performance overhead of sealing and unsealing data,
varying the size of the input data.
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Figure 11: Latency of VM operations in Xen: Encrypting
the VM state accounts for the largest fraction of the overhead,
while the execution time of seal/unseal is relatively small. En-
cryption runs AES with 256 bit key size.

able, particularly since the monitor computes the former
once per configuration, and executes the latter only once
for each reboot of a node.

Our evaluation shows that the monitor scales well. A
generic single-core machine running as a monitor node
can check the configurations of up to 633 nodes per sec-
ond. The monitor can withstand a peak throughput of
4.8K attestation requests from external customers per
second on a single node, which is high. Since the pro-
tocol and the key generation are easily parallelizable,
increasing the number of monitor nodes (or cores) can
scale up Excalibur even further.

Finally, we show that the latency of the seal and un-
seal operations is reasonable. In particular, it is on the
order of tens or about one hundred miliseconds for small
data items. For large data the latency increases but it is
dominated by the cost of symmetric encryption.

7.3 Cloud compute service
We evaluate the performance overhead that the changes
to Xen incur on its VM management operations, namely
create, save, restoreandmigrate. We measure the time
to complete each operation using an example VM for 10
trials. The example VM runs a Debian Lenny distribu-
tion, with Linux-xen 2.6.26; it uses a disk image with
4GB, and its memory footprint is 128MB.

Figure 11 shows the results of our experiments. The
performance impact is noticeable, especially for the
save, restore, andmigrateoperations, where the com-

pletion time roughly doubles. The overhead, however,
comes from encrypting the entire memory footprint of
the VM; the usage of Excalibur to secure or recover the
encryption key adds a small delay. Unlike the other op-
erations,createexperiences a small overhead – only a
4% increase. This is because the system only decrypts
the kernel image which occupies 4.6MB, instead of the
larger VM footprint, as in the remaining operations.

As the results show, seal and unseal introduce notice-
able overhead to the VM rental service operations, and
this overhead is due to the symmetric encryption of the
VM image. However, given that these operations occur
infrequently and considering the additional benefits to
the security of data, we argue that these numbers con-
stitute an acceptable trade-off between security and per-
formance.

8 Related work
Over the past several years, there has been a lot of work
on trusted computing [33]. Most of this work targets
single computers with the goal of enforcing applica-
tion runtime protection [15, 19, 23, 26, 27], virtualizing
trusted computing hardware [9], and devising remote at-
testation solutions based on both software [17, 41] and
hardware [12, 20, 36–38, 42]. Other work, focusing on
distributed environments, provides integrity protection
on shared testbeds [13], or distributed mandatory access
control [25]. Our work concentrates on the specific chal-
lenges of cloud computing environments, which fall out-
side the scope of these prior efforts.

Excalibur shares some ideas with property-based at-
testation [36], whose goal is to make the hash-based
software fingerprints more meaningful to humans. Just
like in Excalibur, it maps low-level fingerprints to high
level attributes (properties), and relies on a monitor
(controller) for this mapping. However, this work offers
mostly an abstract model without an associated system.
Moreover, Excalibur goes beyond this work by propos-
ing new abstractions geared toward cloud services.

The work by Schiffman et al. [40] aims to improve
the transparency of IaaS cloud services by providing
customers with integrity proofs of their VMs and un-
derlying VMMs. Similarly to Excalibur, a central com-
ponent called cloud verifier (CV) mediates attestations
of nodes, and uses high level properties (attributes)
for reasoning about node configurations. However, the
scope of this work is narrower than ours: while the CV
only provides integrity proofs, Excalibur builds on these
proofs to enforce policy-sealed data, which is a general
data-centric abstraction for protecting customer data in
the cloud. In addition, the administrator of the CV is
assumed to be trustworthy, representing a weaker threat
model, which, in our view, does not address an impor-
tant class of problems that occur in cloud services to-
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day. Finally, as opposed to Excalibur, this system does
not address the shortcomings of the sealed storage TPM
primitives, which could raise concerns of data manage-
ment inflexibility and isolation crippling if they need to
be used by cloud services to secure persistent data.

Multiple software systems have been proposed to in-
crease the security of sensitive data. At the OS layer, we
find hypervisors and OSes that can protect the confiden-
tiality and integrity of data using isolation [22,26,45] or
information flow control [44] techniques. At the middle-
ware layer, we find frameworks, e.g., to build web ser-
vices that can offer their users strict control over their
data hosted at the provider site [21], enable controlled
sharing of sensitive data using differential privacy [35],
or provide general purpose encapsulation mechanisms
for data [24]. These proposals are complementary to our
work, since, even though these software platforms have
a lot of potential for increasing the security and control
of data on the cloud, they lack an adequate mechanism
for bootstrapping trust. By combining these platforms
with Excalibur, cloud providers have the opportunity to
build new trustworthy cloud services.

In our previous workhop paper [39], we proposed a
trusted cloud architecture to protect the confidentiality
and integrity of customer VMs. Excalibur, on the one
hand, embodies the high-level vision proposed in this
work, but, on the other hand, differs in many design di-
rections, like, for instance, in the fact that Excalibur uses
CPABE to avoid involving the monitor in the operations
that encrypt and decrypt customer data. Furthermore,
unlike our previous workshop paper, we present here
a complete architecture and set of associated protocols,
and a real system implementation.

9 Conclusion

In this paper we present Excalibur, a system that imple-
ments policy-sealed data: a new abstraction that address
the limitations of trusted computing on the cloud, and
enables the design of trustworthy cloud services. Ex-
calibur leverages TPMs, a novel architecture with a set
of associated protocols, and CPABE to provide the de-
velopers of cloud services two new primitives, seal and
unseal, which enable the construction of cloud services
that offer stronger protection over how data is managed.
We demonstrate the simplicity and flexibility of policy-
sealed data by using Excalibur to build an elastic VM
cloud computing service based on Xen and Eucalyptus
that accesses customer’s data only on platform configu-
rations approved by the customer.
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