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Abstract

People use an increasing number of personal elec-
tronic devices like notebook computers, MP3 play-
ers and smart phones in their daily lives. Making
sure that data on these devices is available where
needed and backed up regularly is a time-consuming
and error-prone burden on users. In this paper, we
describe and evaluate PodBase, a system that auto-
mates storage management on personal devices. The
system takes advantage of unused storage and in-
cidental connectivity to propagate the system state
and replicate files. PodBase ensures the durability of
data despite device loss or failure; at the same time,
it aims to make data available on devices where it is
useful.

PodBase seeks to exploit available storage and
pairwise device connections with little or no user at-
tention. Towards this goal, it relies on a declarative
specification of its replication goals and uses linear
optimization to compute a replication plan that con-
siders the current distribution of files, availability of
storage, and history of device connections. Results
from a user study in ten real households show that,
under a wide range of conditions, PodBase transpar-
ently manages the durability and availability of data
on personal devices.

1 Introduction

Modern households have multiple personal elec-
tronic devices, such as digital cameras, MP3 play-
ers, gaming devices and smart phones, in addition
to desktop and notebook computers. As users in-
creasingly depend on such devices, it is important
to ensure the durability of data in the event of loss
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or failure of a device, and the availability of the latest
data on all appropriate devices.

Ensuring that data is durable is an onerous task
even for a single home computer, and the situation
is getting worse as the number and diversity of de-
vices increase. Users must keep track of all devices
that need to be backed up and perform the appropri-
ate actions on a regular basis. Anecdotal evidence
suggests that many users fail to ensure the durabil-
ity of their data [14, 17]. Thus, users face the risk
of data loss, just as they are becoming increasingly
dependent on digital information.

Making sure that a given data object is available
on all the devices that need it is equally burdensome.
A user must regularly connect and synchronize de-
vices to ensure, for instance, that changes to her
address book are propagated to all communication
devices, and that additions to her music library are
present on all devices capable of playing music.

In this paper we present PodBase, a system
that manages data on personal devices in an
autonomous, decentralized, device- and operating
system-independent manner. The system is trans-
parent to the user, takes advantage of unused storage
space and exploits incidental pairwise connectivity
that naturally occurs among the devices, (e.g., via
Wi-fi, Bluetooth or USB).

With PodBase, each device stores metadata that
describes a household’s devices and data. During
pairwise connections, devices reconcile their meta-
data and exchange data. Over time, metadata and
data propagate among a household’s devices. Pod-
Base progresses toward a state where, subject to
available storage and in order of decreasing priority,
(i) the contents of any failed device are restored to
a replacement device, (ii) each object has a certain
minimal number of replicas, and (iii) each object is
available on devices that can potentially use it.

Results from our user study show that many
households have sufficient storage and connectivity
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to permit full replication. However, there is typi-
cally not one hub device with plenty of storage to
which all other devices are regularly connected with
sufficient bandwidth. To ensure full and timely repli-
cation, PodBase must therefore be able to use free
space on all and replicate data between any pair of
devices, and possibly move data via multiple pair-
wise connections.

Given the vast space of possible configurations,
device connection sequences and replication plans,
designing an appropriate replication algorithm for
PodBase is not straightforward. Simple, greedy al-
gorithms are stable and robust but tend to get stuck
in local minima. PodBase instead uses linear opti-
mization to compute an adaptive replication plan
from a declarative specification of the goal state,
and a local view of the current replication, avail-
able storage and history of device connections. As
a result, PodBase is highly adaptive and provably
stable. Moreover, it finds sophisticated solutions in
unexpected scenarios. For instance, without being
programmed for this case, the system takes advan-
tage of “sneakernets”, i.e. mobile devices to trans-
port data between home and office, thus avoiding
slow broadband connections.

In the rest of the paper, Section 2 states the re-
quirements. We discuss related work in Section 3.
Section 4 presents the design of PodBase and Sec-
tion 5 describes its replication algorithm. Section 6
presents our evaluation and Section 7 concludes.

2 Requirements

PodBase is intended for a household with one or
more users and a set of shared personal devices.
Based on the results of a feasibility study [20], we
can characterize this environment as follows:

• Devices are periodically connected, such that
any pair of devices can eventually communicate
via a series of sequential pairwise connections.

• A device may fail or be lost at any time. How-
ever, the failure or loss of many devices during
a short period of time is unlikely.

• Devices may be turned off when not in use; it
cannot be assumed that any one device is always
online.

• The system must be able to handle a wide
range of usage patterns and device configura-
tions, without attention from an expert system
administrator.

An important aspect of the target environment is
that most users don’t have the expertise, interest or
time to manage data and storage on their devices.
They expect the system to do something reasonable
automatically. Unlike a system designed for expert
users (like the authors and readers of this paper),
PodBase must be able to achieve its goals with little
user expertise and attention.

2.1 Desired system behavior

In this section, we describe the desired system be-
havior intuitively and by example. A more detailed
description of PodBase’s properties, design and im-
plementation follows in subsequent sections.

PodBase aims to relieve users from having to
worry about the durability and availability of their
data. Durability requires that the failure or loss of a
device not result in the loss of user data. Availability
requires that each device store the latest collection
of data relevant to that device. For example, each
communication device should store the latest version
of the address book and, subject to available storage
space, a shared music collection should be available
on all devices capable of playing music.

As an example, Alice and Bob share a household.
Alice has a notebook, an MP3 player and an external
USB hard drive. Bob has a notebook and a desktop
computer at his office. Their home has a wireless
network connected to the Internet via a broadband
connection. On workdays Alice and Bob bring their
notebooks to their offices and perform their daily
work, such as writing documents and using email.

At night both return home with their notebooks
and use them to surf the web, play games, or listen
to music. Although they have important data stored
on their notebooks, they rarely back up their data.

PodBase should automatically perform the follow-
ing tasks without any explicit action by Alice or Bob:

• Every night, new or modified files are replicated,
in cryptographically sealed form, between Alice
and Bob’s notebooks via the wireless network.
(This works even when they are on vacation,
e.g., when the pictures Alice uploads from her
camera are replicated on Bob’s notebook.)

• When Bob purchases a new CD and rips it to
his hard drive, a replica of the mp3 file is later
moved to Alice’s notebook. When Alice con-
nects her MP3 player to charge, it also receives
the new music.

• Whenever Alice or Bob edit their personal
address books, the changes are automatically
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propagated to their other communication de-
vices.

• Whenever Alice’s USB hard drive is connected
to her laptop, additional replicas of the files and
replicas on her laptop are made.

• Bob’s office desktop is connected to his home via
a broadband connection. Rather than transfer
data using the slow connection, the system uses
Bob’s notebook disk to rapidly replicate data
between home and work.

• When Bob’s notebook is running low on disk
space (after removing any replicas), the sys-
tem asks Bob if it should move not recently ac-
cessed movie files to Alice’s USB drive, which
has plenty of space.

PodBase can recover from otherwise costly inci-
dents. For example, imagine Alice’s laptop is stolen.
With PodBase, she is able to restore the data on
the lost device’s hard drive to her replacement note-
book. When she connects over the wireless network
to Bob’s notebook, some files from her stolen note-
book are restored on the new device. When she later
connects her new notebook to the USB drive, the re-
maining files are restored. Thanks to the replication
between home and Bob’s office, they could recover
all data even after a total loss of the home or office
devices.

An important goal we set ourselves for PodBase
is transparency: the system’s background activity
should not affect users’ experience during normal op-
eration. By default, the system does not remove user
files, automatically propagate changes to user files or
attempt to reconcile conflicting versions of concur-
rently modified files. Instead, PodBase maintains all
versions of a file along with their modification his-
tory. Optional plug-ins can define file type-, device-,
or application-specific consistency semantics.

PodBase’s transparency is consistent with the
principle of least surprise: by default, the installa-
tion of the system should not change a device’s user-
visible behavior during normal operation. Advanced
behavior (e.g., automatic propagation of changes to
the address book) can be enabled explicitly by en-
abling appropriate plug-ins.

3 Related work

PodBase is in the spirit of Weiser’s Ubiquitous Com-
puting vision [39], as it transparently manages stor-
age on personal devices. To the best of our knowl-
edge, no prior system provides automatic durability

and availability of data on personal devices, without
relying on central storage, a fast Internet connection
or explicit user attention.

With Personal Server [37], users carry a personal
storage device and use input/output devices found
in the environment. In Omnistore [10], data is main-
tained on a central store, while other devices interact
to cache data or relay data to the store. The Roma
system [32] provides a shared, centralized metadata
service that can be used to build higher-level ser-
vices for synchronization, consistency and availabil-
ity. Apple TimeMachine [34] and Windows Home
Server [40] provide automatic backup to a dedicated
storage node. Unlike PodBase, the above systems
rely on a dedicated storage device, are vulnerable to
the failure or loss of that device, and cannot exploit
unused storage on other devices.

Availability of data on a set of devices can be pro-
vided by a distributed file system that supports dis-
connected operation, like Bayou [33], Ficus [19], and
Coda [12]. Some systems additionally support par-
tial replication to meet the needs of mobile devices,
e.g. PRACTI [1], WinFS [42], Roam [24], Ensem-
blue [18], the Few File system [22] and Segank [29].
Oasis [25] is an SQL-based data management system
for pervasive computing applications. PodBase dif-
fers from these systems in that it replicates data for
availability and durability, is fully automatic, takes
advantage of pairwise connections and unused stor-
age efficiently, requires no centralized server, and is
device, vendor and OS-independent.

Cimbiosys [23] is a platform for content-based par-
tial replication. Like PodBase, Cimbiosys carefully
manages the amount of information that has to be
exchanged during pair-wise connections. The goal
of Cimbiosys is to facilitate replication by propagat-
ing updates between peer devices. Applications or
users are expected to specify filters for what each de-
vice should store. Unlike PodBase, Cimbiosys does
not specify a replication policy for either availabil-
ity or durability, and instead provides a replication
platform for higher level applications. For replica-
tion to eventually reach the desired state, Cimbiosys
assumes that all devices that replicate a given col-
lection of objects form a tree, such that a parent
stores a superset of the objects stored by its chil-
dren and children regularly connect to their ances-
tors. PodBase, on the other hand, achieves eventual
consistency as long as any two devices are repeatedly
connected via a sequence of pairwise connections.

Like PodBase, Perspective [27] supports auto-
matic partial replication among mobile devices,
without relying on a centralized server. However,
Perspective assumes that a view is defined for each
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device, which specifies the set of files that should
be present on the device. Files are then replicated
along sequences of pairwise connections, where a file
must be contained in the view of each device that
appears on the path. PodBase, on the other hand,
uses multi-step replication plans, where files can be
placed on intermediate devices solely for the pur-
pose of transporting them to another device. Pod-
Base computes a replication plan automatically and
dynamically to maximize durability and availability
given the available free space on devices, without
requiring the specification of per-device views.

One could try to simulate the effect of PodBase’s
replication policy in Perspective by specifying that
each device’s view include all files. Perspective
would then replicate all files greedily as device con-
nections occur, until each device either replicates all
files or its space is exhausted. Unless most devices
have enough space to store most files, however, this
would likely lead to uneven replication levels and
poor availability. Finally, PodBase was evaluated
using an actual user deployment.

Device Transparency [30] is a storage model for
mobile devices, where each device maintains global
metadata. PodBase uses a similar capability as a
building block to support transparent data replica-
tion for availability and durability. Moreover, Pod-
Base can also support devices too small to store
metadata for all objects in the system.

Synchronization tools like Unison [36] synchronize
data among devices, and attempt to reconcile repli-
cas that have diverged due to concurrent edits. Win-
dows Live Sync [41] and Live Mesh [13] allow users to
sync folders on their machines. File synchronization
tool like these can be used as a plug-in for PodBase.
Groove [9] provides a collaborative workspace that
propagates file edits automatically among a group
of users. PodBase is also concerned with durability
and focuses on intermittently connected devices in
the home.

Pastiche [4] and FriendStore [35] implement co-
operative backup on users’ machines in a peer-to-
peer network. PodBase replicates data for avail-
ability and durability, within a household, on inter-
mittently connected devices, and without relying on
third-party storage.

Cloud storage services (e.g. [5, 15, 28, 31]) provide
automatic backup or synchronization for mobile de-
vices at a charge. PodBase is free, can replicate
much faster because it is not limited by the upstream
bandwidth of a broadband connection, exploits un-
used storage on existing devices, replicates among
devices that are away from home (e.g. on vacation),
and avoids the dependence on a single provider for

data protection. Nevertheless, PodBase can take ad-
vantage of a Cloud storage service to maintain ad-
ditional off-site replicas for added safelty.

Keeton et al. [11] advocate the use of operations
research techniques in the design and implementa-
tion of systems. PodBase is an example of a sys-
tem that uses linear optimization to adapt to its en-
vironment. Other examples include Rhizoma [43]
and Sophia [38], which use logic programming to
optimize cloud computing and network testbed envi-
ronments, respectively. Pandora [2] uses linear op-
timization to optimize bulk data transfers for cost
and timeliness, using a combination of Internet data
transfers and the shipping of storage devices.

Since PodBase shares data among a set of inter-
mittently connected devices, it implements a form of
delay tolerant network (DTN) [6]. PodBase can be
viewed as a data management application on top of
a specialized DTN. The Unmanaged Internet Archi-
tecture [8] (UIA) provides zero-configuration naming
and routing for personal devices. PodBase addresses
the complementary problem of data management for
personal devices.

A prior workshop paper [20] sketches a prelimi-
nary design of PodBase and presents results from a
trace-based feasibility study. This paper contributes
a revised design, a full implementation, a new repli-
cation algorithm, support for space-constrained de-
vices, a plug-in architecture to add file type and de-
vice specific behavior, an extensive evaluation and
a user study. A short version of this paper appears
in [21].

4 PodBase design

We start with an overview of PodBase, its user in-
terface, operation, plug-in architecture and security
aspects.

4.1 Overview

PodBase is implemented as a user level program. It
keeps track of user data at the granularity of files.
PodBase is oblivious to file and device types. How-
ever, PodBase supports a plug-in architecture, by
which file type and device specific data management
policies can be added.

PodBase distinguishes between active devices and
storage devices. Storage devices include hard drives,
media players and simple mobile phones. Active de-
vices run the PodBase software and provide a user
interface. An active device contains at least one stor-
age device; additional storage devices can be con-
nected internally or via Bluetooth or USB. The set
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of devices in a household form a PodBase pool. In
each pool, there must be at least one active device,
which runs the PodBase software.

Active devices communicate via the network and
handle the exchange of data. Whenever two active
devices communicate, a storage device is attached to
an active device, or two storage devices are attached
to the same active device, we say that these devices
are connected. Data propagates during these pair-
wise connections.

There are three different types of data on each
storage device: (1) regular user data, (2) PodBase
file replicas, and (3) PodBase metadata. Although
logically separate, all of these data are stored in the
device’s existing file system. The PodBase repli-
cas and metadata are cryptographically sealed and
stored under a single directory.

Metadata describes a device’s most recent view of
the pool’s state. Included in the metadata is the
set of known devices and their capacities, a logical
clock for each storage device and a list of all user files
that PodBase manages, along with their replication
state. Capacity constrained devices may store only
a subset of the system’s metadata, as described in
Section 4.3.2.

Some of the space on a device not occupied by user
data or metadata is used to replicate files for dura-
bility and availability. User data has priority over
replicas. PodBase continuously monitors its storage
use and seeks to keep a proportion fmin of the de-
vice’s capacity free at all times.

When a file is modified by an application or the
user, PodBase creates a new version of the file and
replicates both the old and new version indepen-
dently. Plug-ins (see Section 4.4) can be used to
automatically apply consistent file updates, recon-
cile conflicting versions or purge obsolete versions
in a file type-specific manner. Users can manually
retrieve copies of old versions or even deleted files.

4.2 User interaction

Next, we describe how users typically interact with
PodBase. Though PodBase is designed to mini-
mize user involvement, some interaction is required.
Moreover, interested, tech-savvy users have the op-
tion to change its policies.

Device Registration. When a new device is con-
nected for the first time, PodBase asks the user if
the device should be added to the storage pool.

Device Deregistration. A storage device may
permanently disappear due to loss, permanent fail-
ure or replacement. If a device has not been con-
nected for an extended period (e.g., a month), Pod-

Base prompts the user to connect the device or else
deregister it.

Data Recovery. When a storage device fails, Pod-
Base can recover the files it stored. The user informs
PodBase that she wishes to recover the data from a
particular lost device onto a replacement device or
onto an existing device. The PodBase software on
the recovery device then obtains copies of the appro-
priate files during each connection.

Externalization. By default, users and applica-
tions cannot directly access replicas stored on a de-
vice. However, users with the appropriate creden-
tials can externalize replicas, that is decrypt and
move the cleartext of a replica into the user file por-
tion of the device. Alternatively, externalization can
be automated using a plug-in.

Warnings. PodBase warns the user when it is un-
able to replicate files because there is insufficient
storage space or connectivity, with specific instruc-
tions to buy an additional disk or connect certain
devices.

4.3 Device interaction

When two devices are connected, they reconcile their
view of the system and exchange data. First, the
devices reconcile their metadata. Then, PodBase
determines if any of the replicas on either device
should be moved, copied or deleted. Next, we detail
these steps.

4.3.1 Metadata contents

The metadata consists of the following items (their
purpose will become clear in the subsequent discus-
sion):

1. Vector Clock: A vector clock, consisting of the
most recent known logical clock values for each de-
vice in the pool. A device’s logical clock is incre-
mented upon each metadata change. When a device
is removed from the system, its logical clock is set
to a special tombstone value. Also, the metadata
includes the most recently observed vector clock of
each device in the storage pool.

2. Connection History: A list of the past 100
connections that have been observed between each
pair of devices, their time, duration, their average
and maximum throughput, as well as the network
addresses used by the devices.

3. Policies: The current policy settings. Policies
can be modified by sophisticated users. Installed
plug-ins (Section 4.4) can also modify the policies.

Items 1–3 are included in the metadata of all devices.
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4. Set of user files: Keeps track of the user files
stored on each device in the pool. The content hash1

value, size and last modification time are recorded
for each unique file. In addition, the content hashes
of the last v (v = 10 by default) versions of each file
are included (modification history).

5. Set of replicas: Keeps track of the repli-
cas stored on each device in the pool. For each
replica, its size, content hash value, and replica id
are recorded.

6. Reverse map of unique files in the pool:
Maps a content hash value to the set of files whose
content matches the value. This mapping is used
to determine the current replication level for each
unique data file, considering that different files may
have identical content. (PodBase de-duplicates files
prior to replication.)

Each record in items 4–6 contains a version number,
which corresponds to the device’s logical clock at the
time when the record was last modified. A small
device may include only a subset of the records in
items 4–6.

4.3.2 Metadata reconciliation

Metadata reconciliation is straightforward in the
common case when two devices that carry the full
metadata are connected. They compare their vec-
tor clocks to determine which has the more recent
metadata for each device in the pool. For each such
device, the more recent metadata is then merged into
the reconciled metadata.

PodBase also supports devices too small to hold
the full metadata. (In practice, devices smaller than
about 100 MB are excluded. This is a mild limita-
tion, since smaller storage devices are already rare
at the time of this writing.) Such devices hold the
full metadata for the files and replicas they store,
plus some amount of partial metadata about other
devices.

PodBase ensures progress and eventual consis-
tency of metadata, even if some devices are only
ever sequentially connected via small devices. To
this end, PodBase places metadata on a small de-
vice that are needed to update other devices. For
this purpose, it checks the last known vector clocks
of all devices. PodBase selects partial metadata sub-
ject to the available space on the small device, while
ensuring that (i) metadata needed by more devices
are more likely to be chosen, and (ii) a roughly equal
number of metadata items are included for each de-
vice that the small device may encounter. This pol-

1A second preimage resistant hash function is used

icy seeks to maximize the spread of useful informa-
tion and ensure convergence of device metadata even
in extreme situations where different sets of devices
are connected only via a small device.

When reconciling any device L with a small device
S, PodBase checks if the metadata on S can be used
to update L. For a given device d whose partial
metadata appears in a small device, all metadata
are included that have changed within some range
of versions i < j of d’s metadata. This metadata
can be used to update L if L’s current metadata
version for d is at least i and less than j. If so,
PodBase merges the metadata about d from S into
L’s metadata.

4.3.3 Replication

Once the metadata is reconciled, PodBase deter-
mines the actions, if any, that should be performed
on the data. PodBase may copy a replica of a file,
in which case the file is stored on the target device
with a new random replica id (used to distinguish be-
tween replicas), while the original replica remains on
the source device. A device may also move a replica,
in which case the replica is stored on the target de-
vice with the same replica id and then deleted from
the source device. Finally, a device may delete a
replica, to make room for another replica that it be-
lieves is more important. During replication, data is
transmitted in a cryptographically sealed form, and
a hash of each replica’s content is attached to ensure
data integrity. How PodBase determines the actions
that should be performed is described in Section 5.

4.3.4 Data recovery

After a device loss or failure, data can be recovered
onto a replacement device at users’ request. During
each connection to another device, the replacement
device restores as many files as possible, guided by
the reconciled metadata. The most recent available
version of each file is restored. Users can speed up
the recovery process by connecting appropriate de-
vices under the guidance of PodBase. The restora-
tion is complete when the replacement device has
received, directly or indirectly, from each device in
the pool a metadata update no older than the time
at which the lost device went out of service, and
the reconciled metadata indicates that all files were
restored.

4.3.5 Replica deletion

PodBase removes replicas when the free space on a
device falls below fmin, the minimal proportion of
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a device’s storage that PodBase keeps available at
all times (by default, fmin = .15). When PodBase
frees space, it considers the most replicated files first.
Among files with the same replication level, PodBase
first deletes replicas that have the lowest (randomly
assigned) replica id among the replicas of a file, then
the second lowest id, and so on. This policy ensures
that different devices delete replicas of the same file
only when a shortage of space dictates it, but never
as a result of inconsistent metadata in partioned sets
of devices. (PodBase never deletes the original or
any externalized replica.)

4.4 Plug-ins

Plug-ins can be used to implement policies and
mechanisms that are specific to particular file types,
collections of files, device types or specific devices.
Following are some example plug-ins.

Consistency: PodBase replicates each version of
a file independently. A plug-in can be used to au-
tomatically propagate changes or reconcile concur-
rent modifications under a given consistency policy.
There is a large body of work on consistency, and
powerful tools exist for reconciling specific file types,
e.g. [7,16,26]. Such tools can be integrated as plug-
ins in PodBase.

Unified Namespace: By default, PodBase does
not automatically externalize replicas. A plug-in
could export files as part of a global uniform names-
pace on all devices. This would allow users to browse
the contents of all devices, and access files available
locally (subject to user access control restrictions).
In combination with a plug-in that provides consis-
tency, this would provide a simple distributed file
system.

Digital Rights Management (DRM): Media
files stored on a user’s devices may be protected
by copyright. Usually, copyright regulations allows
users to maintain copies on several of their personal
devices. However, if restrictions apply, then the poli-
cies appropriate for a given media type can be im-
plemented as a plug-in.

Archiving: A plug-in can automatically watch for
large, rarely accessed user files (e.g. movies). If
such files occupy space on a device that is nearing
capacity, the plug-in suggests moving the collection
to a different device with sufficient space. If the user
approves, PodBase automatically moves the files.

Content-specific policy: A content-specific plug-
in can, for example, replicate and automatically ex-
ternalize mp3 files on devices capable of playing mu-
sic. Moreover, the plug-in can select a subset of the

music collection for placement on small devices. For
instance, when replicating music on a device with
limited space, a plug-in may select the most recently
added music, the most frequently played music, and
a random sample of other music.

As a proof of concept, we developed a plug-in
that automatically externalizes replicas of mp3 files
and imports them into iTunes. The plugin required
around 100 lines of Java code, and two simple OS
specific AppleScript scripts to interact with iTunes.

4.5 Security

PodBase uses authenticated and secure channels for
all communication among devices within a pool.
When a device is introduced to a PodBase pool, it
receives appropriate key material to enable it to par-
ticipate. Users have to present a password when they
wish to interact with PodBase. Metadata and repli-
cas are stored in cryptographically sealed form when
stored on devices, in order to minimize the risk of
exposing confidential data when a device is stolen.
PodBase respects the file access permissions of user
files – encrypted replicas can be externalized only by
a user with the appropriate permissions on the file.
By default, PodBase manages all of a device’s con-
tents; it can be configured to manage only specific
subtrees in the namespace of a device.

The strength of PodBase’s access control within a
household is designed to be at least as strong as the
access control between different users on the same
computer. If stronger security isolation is required
between devices or users, then they should not join
the same pool. For instance, if a user’s office com-
puter contains confidential material that must not
leave company premises, then it must not join the
user’s home PodBase pool.

5 Replication

We considered a number of replication algorithms.
Greedy algorithms place under-replicated files on
the first connected device that has space. These
algorithms are simple, stable, and replicate files at
the first opportunity, which is good. Unfortunately,
the initial placement of a file is often sub-optimal
and cannot be changed. (By definition, greedy algo-
rithms never reconsider an earlier choice and cannot
move replicas if a better placement turns out to be
possible in the future.) A more sophisticated class of
algorithm seeks to equalize the storage utilization of
connected devices, thereby moving replicas toward
devices that have space. Unfortunately, these algo-
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rithms cannot take advantage of a “shuttle device”
to transport data between clusters of devices, e.g.,
home and office.

Extending the algorithms to cover these and other
important cases while avoiding degenerate perfor-
mance in unexpected cases seemed daunting. In-
stead, we decided to pose optimal replication declar-
atively as a linear optimization problem. This ap-
proach minimizes design time assumptions about
system configurations and usage patterns, computes
optimal solutions to unexpected cases at runtime,
and has provable stability properties.

Whenever two devices connect, PodBase uses an
LP solver to compute a multi-step replication plan
that moves the system toward the goal state. The
plan considers the current system state and likely
future device connections, and specifies which repli-
cas should be deleted, copied or moved during each
connection accordingly.

In general, only the first step of the replication
plan is relevant, as it concerns the currently con-
nected devices. The subsequent steps are specula-
tive, since they depend on which future device con-
nections actually occur. If the actual device con-
nected next differs from the current plan, a new plan
is computed. The following subsections describe the
approach in more detail. Additional detail can be
found in Appendix A.

5.1 Replication objective

First, we wish to guarantee that files are evenly repli-
cated on as many devices as the available space al-
lows. As a secondary goal, we want to maximize
availability by placing copies of each file on devices
where it is potentially useful. In the rest of this sec-
tion we define these two properties more formally.

Let D be the set of participating devices and let
F be the set of files that are managed by the system.
For each device d ∈ D, let spaced denote its capacity,
i.e., the amount of space available at d for storage of
both user and replica files. For a set of files S ⊆ F ,
size(S) denotes the amount of storage required to
keep a copy of S. For each device d, the set of user

files stored in that device is denoted by user-files(d).
In particular, for each device d, size(user-files(d)) ≤
spaced.

The goal of a storage management system is to
determine and maintain, for each device d, a suitable
selection of files, store-files(d) ⊆ F , to be stored on
it. Files are replicated when they are selected for
storage at several different devices. Moreover, at
any time, such a selection must satisfy

• user-files(d) ⊆ store-files(d), user files are never
moved or deleted from devices;

• size(store-files(d)) ≤ spaced, the files stored on
a device may not exceed its capacity.

Given a particular store-files selection, we say that
its replication factor is the number of copies k of the
least replicated file in the system. More formally,

k = min
f∈F

|{d ∈ D : f ∈ store-files(d)}| .

Moreover, we say that the replication factor is opti-

mal if there is no other file selection store-files
′ with

a higher replication factor.
In order to model availability, plug-ins have the

option to provide an availability selection that as-
signs to each device d ∈ D a set of files like-files(d)
that it should preferably store. The availability

score, or av-score, of a file selection store-files is then
defined as the number of file copies that match the
preference expressed by like-files, i.e.,

av-score =
∑

d∈D

|like-files(d) ∩ store-files(d)| .

In a desired goal state, PodBase places at each
device d ∈ D, a set store-files(d) of replicas such
that the following properties are satisfied:

Durability. The replication factor is optimal, i.e.,
files are maximally replicated on the existing devices.

Availability. Among the file selections with op-
timal replication factor, store-files has a maximal
av-score; i.e., files are replicated in devices where
they are useful.

5.2 Problem formulation

The system state, the effects of the actions, as well
as the objectives are modeled as a set of linear arith-
metic constraints. Care must be taken to ensure the
problem formulation scales. To make the optimiza-
tion problem tractable, we group files into equiv-
alence classes called categories. All files that are
stored on the same set of devices are in the same
category. The system state is then encoded by spec-
ifying, for each category, the total amount of space
occupied by all files in that category. This signifi-
cantly reduces the number of variables in the prob-
lem formulation, which no longer depends on the
number of files but on the number of devices in a
pool, without any loss of accuracy.

To model the connectivity among devices, a graph
is constructed with a link between each pair of de-
vices that can potentially be connected. The link
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weight specifies the estimated cost of data transfer
among the devices. This cost is calculated based on
the maximum connection speed and the probability
that the devices will be connected on a given day,
based on the history of past connections. In this
calculation, more recent connections are weighted
more heavily; individual measurements are filtered
appropriately to reduce noise (see Appendix A).

Finally, we model the actions (copy, move, delete)
PodBase can perform, and their effects on the sys-
tem state. In general, a sequence of connections may
be required in order to affect a certain state change
(e.g., copy some files from A to B, and then from B
to C). The formulation then encodes how the possi-
ble sequences of actions modify the number of bytes
in each category.

Encoding the problem this way enables us to sym-
bolically describe all the possible plans that PodBase
could execute in order to manipulate the distribution
of files. Given this formalization, the goal is to find
a plan that optimizes the desired goals.

The optimization involves multiple stages, nar-
rowing the set of candidate replication plans in each.
First, the maximal replication factor k is computed
based on the available space in the system. Then,
we optimize for durability by computing replication
plans that can achieve a k-replication for all files.
Next, we optimize for cost by narrowing the set of
plans to those that minimize the sum of the link
weights. In the next stage, we select among the re-
maining plans those that maximize availability. In
the final stage, we select a plan that minimizes the
number of necessary replication steps. PodBase then
executes the first step of the resulting replication
plan, by copying, moving or deleting replicas on the
currently connected devices. In practice, we do not
consider plans with more than three replication steps
for efficiency (few interesting plans with more steps
occur in practice).

The optimization favors cost over availability, be-
cause high cost plans are highly undesirable: they
may rely on links with low bandwidth or rare con-
nectivity. Notably, this choice still permits good
availability, because the cost optimization generally
leaves many candidate plans from which the avail-
ability optimization can select. The reason is that
all plans involving the same set of connections have
the same cost, and there is a combinatorially large
number of such plans, corresponding to the different
placements of replicas that can occur as a result of
these connections.

The cost optimization does, however, eliminate
plans that create more than k replicas, even if avail-
ability calls for more. To enable additional repli-

cation for availability, PodBase changes the order
of optimizations once the durability goal has been
achieved. In this case, availability is optimized be-
fore cost.

In a final step, the categories are mapped back
onto individual files. In cases where the solution
would require a file to be split by an action, file in-
tegrity can be fed back into the optimizer as an addi-
tional constraint. The replication process is guaran-
teed to converge in a bounded number of steps after
the set of primary data files stabilizes.

Additional parameters could be added to the op-
timization. For example, if device reliability data
is available, this information can be considered by
modeling a replica stored on a less reliable device as
contributing less to the durability of the associated
file than a replica stored on a more reliable device.

6 Experimental evaluation

Next, we present experimental results obtained with
a prototype implementation of PodBase. We sketch
the implementation, report on its overheads and ver-
ify that the system behaves as expected. Then we
present measured results from a user study. Addi-
tional results are shown in Appendix B.

6.1 Implementation

PodBase is implemented as a user-level program
written in Java. Most of the code (48,512 lines) is
platform-independent, with the exception of a small
amount (about 1000 lines) of custom code for each
supported platform (Windows 2000 and higher, Mac
OS X). The platform-specific code deals with mount-
ing disks and naming files. The implementation cur-
rently requires that storage devices export a file sys-
tem interface, and that active devices are able to run
Java 1.5 bytecode.

Running PodBase on platforms like cell phones
or game consoles is feasible, but requires additional
engineering effort. We feel that our prototype strikes
a reasonable trade-off between engineering effort and
research goals, because it can use the majority of
devices in our study.

In our deployment, active devices contact a server
(2.6Ghz AMD Opteron) running CPLEX 11.2.1 (a
commercial LP solver) to compute replication plans.
Using the server simplifies the installation of Pod-
Base and is not fundamental to the system. With
an additional installation step, PodBase can be con-
figured with a local solver, like the free LP solver
package clp [3].
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PodBase rate-limits network and disk I/O, marks
I/O as non-cacheable and runs single-threaded to
avoid competing with other applications for re-
sources. To the extent possible, we tried to ensure
that users did not notice that PodBase was running
in the background.

6.2 Computation and storage over-

head

PodBase periodically crawls file systems to monitor
the state of files. Each time a new file is discov-
ered or an existing file is modified, the file is hashed
and added to the pool’s metadata. We measured the
amount of time the first crawl took when a new drive
was added to the system. The measurements were
taken on a 2.4 GHz Apple MacBook Pro, running
OS X, one author’s primary computing device. The
internal notebook disk contained 165,105 files with a
total size of 87.4GB. The initial crawl took approx-
imately 5 hours to complete. Subsequent crawls,
which only re-compute hashes for new or modified
files, took on the order of 10 minutes. (Both OS X
and Windows support APIs that notify applications
of any folder or file modifications. Using these APIs
can dramatically reduce the need for crawling, but
our implementation did not use them.)

The size of the system’s metadata grows propor-
tionally with the number of files and replicas man-
aged by a PodBase pool. In our user study, the
uncompressed metadata size ranged from 270MB to
2.5GB. This amounts to only a small fraction of the
capacity of most modern storage devices. For the
devices in our user study, storing the full metadata
was possible in all cases. However, smaller storage
devices (e.g. older USB sticks or cameras) are sup-
ported via the partial metadata mechanism.

Using the LP solver to compute a replication plan
takes between one and thirty seconds for most house-
holds, and 180 seconds for the largest household in
the user study. When two devices connect, replica-
tion starts immediately on a speculative basis, while
the optimization runs in the background. For in-
stance, PodBase starts to replicate greedily those
files that appear the most underreplicated or should
reside on one of the devices for availability, accord-
ing to the reconciled metadata. This replication can
later be undone, in the (uncommon) case that it is
inconsistent with the computed plan.

6.3 Data restoration

Next, we test PodBase’s ability to successfully re-
store the contents of a lost device. We simulated

the loss of a notebook after the replication phase
was completed. PodBase successfully restored to a
USB hard drive all 211206 files (75GB) that were
present at the time of the last crawl of the “lost”
notebook. The restoration took 5 hours 27 minutes
to complete, which includes decrypting the replicas.

6.4 Partial metadata reconciliation

Next, we experiment with small devices that carry
partial metadata. In our example, there are three
devices: two full metadata devices, which never di-
rectly connect to each other; and a small device,
which is connected to each of the other devices once
per day. The small device is able to carry 100MB of
metadata about other devices, and unable to carry
actual data. The total metadata size is 2GB.

Initially, the large devices are completely unaware
of each other. No new data is added after the ex-
periment begins. It took ten days or 21 connections
for the metadata on the two large devices to con-
verge, which is expected based on the relative size
of the metadata and the small device. This example
shows that metadata converges even in extremely
constrained cases. In our experience, most devices
are larger and connectivity tends to be much richer
in practice, leading to much faster convergence.

6.5 User study

To study how PodBase performs in a real deploy-
ment, we asked ten members of our institute to
deploy the system in their households and col-
lected trace data over a period of approximately one
month. We asked the users to, as much as possible,
ignore the presence of PodBase and use their devices
the way they would normally use them. Three users
were given an external one terabyte USB disk, be-
cause they had insufficient free space to allow their
files to be replicated.

For practical reasons, the number of households
and users in our study is limited and covers a rela-
tively short period of time. Moreover, at least one
member of each household was a computer science
researcher. Therefore, there is a likely bias towards
users who have an interest in technology. As a re-
sult, our results may not be representative of a larger
and more diverse user community, or a long-term de-
ployment. Nevertheless, we feel that the study was
tremendously valuable in identifying the difficult is-
sues, in building our confidence that the system is
feasible and addresses a real need, and in under-
standing the system’s performance in practice.

The system was deployed and actively used over
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the course of two years. The data collected for the
results presented in this paper were collected be-
tween July and September 2009. During this period,
we collected anonymized data about file creation,
modification and deletion on each device, when and
where replicas were created, and which devices were
connected at what times. We use these logs to gen-
erate the graphs used in the rest of this section.

First, we provide a brief overview of the house-
holds used in our deployment and the characteristics
of the devices used in each.
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Figure 1: Number and type of devices, by household.
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Figure 2: Storage capacity and free space on devices
before PodBase begins replication. Additional space
corresponds to the USB disks given to households 1,
4, 5.

Figure 1 shows the number of storage and active
devices in each household. The number of active de-
vices ranged from one to seven. Some households
had no additional storage devices, while others had
up to three. Households 1, 4 and 5 received an ad-
ditional one terabyte USB disk, which is reflected in
the data. Household 4 has a virtual device that is
backed by 10GB .Mac cloud storage. PodBase uses
this device like any other, considering its capacity
and connection bandwidth.

Figure 2 depicts, for each household, the total size
of the household’s storage pool, divided into used
storage and available storage at the beginning of the
deployment and before PodBase was activated. The
additional storage given to households 1, 4 and 5

is shown as “additional space”. After this addition,
seven of the households had at least half of their
total storage capacity available. This does not imply
that the remaining three households cannot replicate
their data; whether they can depends on how much
duplication there is among their existing user files.

6.5.1 Replication results

In this section, we evaluate the performance of Pod-
Base by looking at the replication state at the be-
ginning and the end of the (one month long) trace
collection.

Let us look at the replication state of the system
before the households ran PodBase. As shown in
Figure 3 (left bars), many households had files that
existed on only one device, leaving these files vul-
nerable to data loss if the device were to fail. Also,
many households had a significant number of files
already replicated, either as copies of the same file
or different files with identical content.

The right bar in Figure 3 shows the replication
state at the end of the trace collection2. Five house-
holds (1–3, 8–9) had most (more than 97%) of their
files replicated. With the exception of household
9, which had not quite finished replicating its origi-
nal files, the remaining households’ unreplicated files
were recently created or modified and had not yet
been replicated at the end of the trace. Households
4, 5, and 7 were not able to replicate as much, as
these households had only intermittent connectivity
between a pair of their devices. These households
each had two well-connected devices and one device
that was either mostly offline or connected via a slow
DSL connection. In these cases, all of the data was
replicated between the well connected devices, but
the data on the poorly connected device was not
replicated fully.

Households 6 and 10 did not have enough space to
replicate the remaining 19% and 10% of their files,
respectively. In order to improve upon these results,
the users would have had to purchase inexpensive
additional storage. As a sanity check we had users
from households 4 and 10 bring in their notebooks in
order to confirm the diagnosis described above. Sim-
ply having household 4 bring its notebook into the
office, where there was good connectivity between
devices, allowed its data to be fully replicated. For
household 10, we attached a one terabyte external
drive to an active device that had data to be repli-
cated. After doing this, less than 0.5% percent of

2The result for household 7 was obtained by re-playing the
trace, because a bug was discovered during the user study that
had influenced the final state of this household
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Figure 3: The initial (left bar) and final (right bar) replication status of each household.

files remained to be replicated.

Several households (1–5, 7 and 9) were able to
achieve a replication factor greater than two for some
of their files, enabling these files to survive multiple
device failures. In Household 2, 80% of the user files
were replicated 4 times or more.

6.5.2 Availability results

A secondary goal of PodBase is to place replicas on
devices where they are likely to be useful. Specifi-
cally, our mp3 plug-in causes music files to be prefer-
entially placed on devices that are capable of playing
music.

In analyzing the trace, we found that one house-
hold had no mp3s and three households had already
replicated all of their music files on the relevant de-
vices. Thus, PodBase did not have an opportunity to
improve availability. However, it did provide a sig-
nificant gain in availability for several other house-
holds. Household 3 had its entire music library of
415 music files made available on all three of its de-
vices. Households 7 and 8 had 851 and 1318 mu-
sic files made available by PodBase, respectively.
Household 9 had 1500 music files from a music li-
brary, which was otherwise loosely synchronized be-
tween its devices, made available on two additional
devices. An additional two households originally had
a significant number of mp3 files on their laptops but
not on their desktops. PodBase replicated these files
onto the desktops, and the mp3 plug-in described in
section 4.4 had externalized the music files. This
happened during an earlier run of PodBase, there-
fore it did not show up in our trace. The users gained
access to 426 songs and 2611 songs, respectively, on
their desktop computers. (The songs were previ-
ously stored only on their notebooks.)

As described in Section 5.2, the replication first
optimizes for durability, then cost (time to com-
plete), and finally availability. A concern might be
that this choice limits the availability the system
can provide. We looked at the impact of this op-

timization process on household 9, for which the fi-
nal replication plan had not achieved full replication
for availability. In this household the final replica-
tion plan yields 95% of the optimal availability. The
remaining 5% were not achieved because the repli-
cation had not yet finished at the end of the trace,
and not because of a limitation in the algorithm.
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Figure 4: Peak daily throughput for each household

6.5.3 Replication latency and throughput

We next look at the maximal replication through-
put in each of the households. Since all households
had many files to replicate at the beginning of the
trace collection, the rate at which data was repli-
cated early in the trace is a lower bound for the
total replication throughput of a pool. This value in
turn provides a lower bound for the rate of new or
modified data that a household could generate, such
that PodBase would still be able to keep up with
replicating.

Figure 4 shows that the peak throughput ranges
from 1.4 to 110 GB per day. This result shows that
PodBase can keep up with a high to very high rate
of data generation, using only existing pair-wise con-
nectivity.

We now examine the replication latency, i.e., the
elapsed time until a new or modified file becomes
replicated. If a file is not yet replicated at the end
of the trace, we include it in the CDF as having an
infinite latency. We first examine those households
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Figure 5: Replication latency for all households

with relatively short latencies. Figure 5(a) shows
a CDF of how long it took to replicate a file. For
households 2 and 4, over 50% of files were replicated
within approximately one day. Households 1 and
7 took longer because there were extended periods
with no connectivity. Household 9 replicated grad-
ually over the course of the trace, as connectivity
allowed. Second, we show the latency of the house-
holds that took significantly longer to replicate their
files in Figure 5(b). In these households, device con-
nectivity is the dominant factor in the replication la-
tency. When there is connectivity, there are sharps
jumps as files get replicated, followed by periods of
disconnection, where no replication happens.

We note that our measured replication latencies
are conservative, because in most households, Pod-
Base was busy replicating the user files found ini-
tially on the devices during a large part of the trace
collection. In steady state, PodBase would have to
replicate only newly created or modified files, reduc-
ing the latencies considerably. Nevertheless, Pod-
Base was able to replicate data in a timely fashion,
subject to available storage and device connectivity.

6.5.4 Rate of new or modified data

Next, we look at the rate of new or modified data
that is being generated. Each of the households in
the user study had on average 528,187 files taking up
332GB. After the initial crawl, an average of 21GB
per day was generated by the addition of new and
modifications of existing files. These numbers are
skewed by a household that stored the disk image of
an active virtual machine in the file system; without
this household, the value was 381MB per day. (Of
course, PodBase could be optimized to handle this
case more efficiently.)

Our normal households generate new or mod-
ified data at a minimal/average/maximal rate of
4.5/36.1/316 Kb/s, while the “heavy” household
generates 2.3 Mb/s. Let us consider how well a

backup system based on cloud storage alone would
perform in our households. At an assumed broad-
band upload bandwidth of 1 Mb/s, transferring the
initial data to the cloud while keeping up with up-
dates would require between 3.7 and 121.6 (median
31.82) days for the normal households. For the
heavy household, cloud storage would be infeasible,
because the rate of new data exceeds the network
bandwidth.

These results show that for timely replication of
data, PodBase’s use of peer connections and local
storage devices is important. For the normal house-
holds, a broadband connection would suffice to repli-
cate new data, but the heavy household would re-
quire a faster Internet connection. Even for the nor-
mal households, relying solely on a broadband con-
nection to the cloud would require a long period of
full network utilization to replicate the initial data,
and increase the replication latency in steady state
(and therefore the window of vulnerability for new
and modified files that have not yet been replicated).

6.6 Discussion

PodBase has been developed by the first author over
a period of two years, with three user deployments
at different stages. Significant engineering effort
was required to make sure our users (most of whom
where not affiliated with the project) and their fami-
lies felt comfortable running it on their personal de-
vices. Users demanded not to have to notice the
presence of the system in their daily activity or be
surprised by it actions, yet expected the system to
do “the right thing” without requiring their atten-
tion. Moreover, different households used their de-
vices in very different ways, some of which we could
not have imagined (see the discussion of results for
different households in Section 6.5). This forced
us to emphasize non-intrusiveness (not interfering
with user’s activities), autonomy (making reason-
able choices without user’s input) and adaptivity to
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unexpected scenarios far more than efficiency. Apart
from the quantitative results reported in this section,
the most important indicator of the project’s success
may be the fact that ten households (which included
members who had little interest and patience for our
project) agreed to use the system for the duration
of the study and beyond.

7 Conclusion

PodBase transparently manages the data stored on
personal devices for durability and availability. The
system takes advantage of existing free storage space
and incidental connectivity among devices. Thus, it
reduces the need for dedicated backup storage or
an external storage provider and avoids the bottle-
neck of a home broadband uplink. PodBase relies on
optimization techniques to achieve highly adaptive
replication. The system is fully decentralized and
does not depend on the health of any one device.
Experimental results from a user deployment in ten
real households indicate that the system is effective
in replicating data without any user attention, and
in many cases without requiring additional storage.
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A Adaptive Replication For-

mulation

In this appendix, we discuss the adaptive replication
LP formulation and its inputs in more detail.

A.1 Definitions

We begin by defining some terminology. A device is
a container for data. A device has a finite capacity,
which can be consumed by storing files or replicas. A
device can have connections to other devices; these
connections have a speed associated with them. A
configuration is the current set of devices and con-
nections.

A state is the current configuration of data stored
on devices. A step describes how a set of actions

moves one state into the next state. The set of
possible actions is restricted by constraints on valid
states. A plan is a set of actions to be taken over a
series of steps.
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A.2 Constraints

A constraint describes the set of valid states that
can exist. An example of a constraint is that no de-
vice can store more data than it has capacity for.
Through the use of constraints the state space of
possible plans is limited to those of interest. Next,
we briefly describe the constraints used in the Pod-
Base LP formulation.

• The amount of data stored on a device cannot
exceed its capacity.

• A non-replica file can not be deleted or moved.

• A copy or a move action can only occur between
connected devices.

• The amount of data copied or moved must not
exceed the original amount of data.

This simple set of constraints is enough to limit
the actions of the system to those that are feasible
in practice.

A.3 Actions

We define two simple actions (copy and delete),
which can be combined to create a third logical ac-
tion (move). The basic actions are to make a copy
of a file on another device, or to remove a copy of
a currently stored file from a device. Moving a file
from one device to another can be accomplished by
first copying to the destination and then removing
the file from the source.

More precisely, copy takes in a state, and then
adds a device to the set of devices that are storing
the file. Similarly, remove takes in the state and
removes a device from the list of devices storing the
file. Associated with each action is a cost. This
cost describes roughly the amount of time it would
take to execute the action. The cost of a remove
is defined as zero, as it can happen more or less
instantaneously. The cost of copying between two
devices is the amount of time that it would take
to move the data over the connection between the
devices. This cost is based on a model described
later in this section.

A.4 Goals

Up to this point we have constructed the building
blocks of the LP. We have defined the valid system
states, and actions that evolve the system state over
time. A goal describes the system state that the
system seeks to eventually reach. PodBase defines

several different goals, which can be combined to
compute replication plans that have a certain set of
properties. These goals are the following:

• Maximize durability: maximize the number of
copies of all data (see Section 5.1)

• Maximize availability: maximize the number of
files that meet the availability goals (see Sec-
tion 5.1)

• Minimize cost (time): minimize the cost of the
sum of all actions in the plan.

• Simplicity (minimize the number of steps):
maximize the number of actions that occur in
the first n steps of the plan. PodBase optimizes
for simplicity once other goals have been opti-
mized for; it is used to ensure the actions in
the plan occur as early as possible. PodBase
optimizes for simplicity by iterating the opti-
mization for decreasing values of n to find the
minimal n for which the solution remains feasi-
ble.

An individual LP formulation is a set of of actions,
constraints, and a fixed goal. However, in PodBase
we often want to optimize multiple goals. To do
this we iteratively solve multiple LP problems, and
fix some components of the next problem with val-
ues derived from the previous problem. While these
building blocks can be arranged in any order, in our
actual PodBase deployment we fixed them as de-
scribed in the section 5.2.

A.5 Categories

A simple approach would be to use the LP formula-
tion with all of the above concepts on a per-file level,
with one variable for each file. However, given the
large number of files in a typical PodBase deploy-
ment, this is not feasible given the current state of
linear optimizers. To make the problem tractable,
we keep track of categories of files, rather than indi-
vidual files. A category is the set of all files stored
on the same set of devices in the same form. An
example is all files stored as user files on A and as
replicas on B. This set is associated with a number,
which is the total size (in bytes) of all files in the set.
An action can move data between these categories
by copying or deleting. The use of categories limits
the number of variables to be included in the LP
to the number of categories, which is much smaller
than the number of files in a PodBase deployment.
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A.6 Defining action costs

An important aspect of the formulation is the cost
of a copy action. (Recall that a delete is assumed to
have zero cost. A move consists of a copy followed
by a delete, and therefore costs the same as a copy.)
The cost of a copy between a given pair of devices
is based on the expectation that the connection will
occur in the near future, as well as the expected
bandwidth and duration of the connection should it
occur. The cost is assigned based on the history of
observed connections between each pair of devices.

More specifically, the cost is based on the through-
put, frequency and duration of past connections
observed between any pair of devices. We com-
bine these factors, filter them to make older
samples worth less than newer samples, and as-
sign a weight to each pair (link). For each <
source, destination > IP pair, we first define a value
throughputpeak, which is the maximal measured
throughput between that pair of devices. Then, for
each day during which a connection was observed,
the daily connectivity connectivityi on day i is cal-
culated as follows:

connectivityi =
secondsconnectedi

86000
(1)

This value is the proportion of time during which a
pair of devices was connected. The value is then mul-
tiplied by throughputpeak to arrive at the expected
average throughput between those two devices:

throughputi = throughputpeak ∗ connectivityi (2)

Now a discount function w(age) is applied, which
weights samples based on how long ago they oc-
curred in the past. For a sample of age age (in days)
the discount function w(age) is defined as:

w(age) = 1/e−log(0.1)/30∗age (3)

The function weights the more recent samples ex-
ponentially higher than older samples. If a sample
is older then 30 days, it has a weight of zero. The
parameters in this weighting function where deter-
mined empirically as reasonable choices in our de-
ployment.

The final expected throughput for a pair of devices
is the sum of all samples divided by the maximum
age:

∑30
i=0 w(i) ∗ throughputi∑30

i=0 w(i)
(4)

The result of this calculation is the rate at which
the two devices are expected to be able to transfer
data between each other.

The calculated rates are then used to label the
edges in a graph connecting all devices that have
ever been connected to each other. In this graph
edges with higher weight are cheaper to use in that
data can flow along the link in less time. From this
weight, the cost can be defined as the amount of
time it would talk data to flow across a link. For
example, a link with a weight of 100KB/s, carrying
1MB, would have a copying cost of 10s. Through the
use of the link costs, a total cost for a set of actions
can be computed.

To illustrate how the link weights adapt to changes
in the actual connectivity, we present a brief exam-
ple. Two devices A and B are connected via a sin-
gle DSL link, A can upload to B with a maximal
speed of 1MB/s. Assume that the devices are al-
ways connected via DSL, and have been for more
than 30 days, then the predicted throughput would
be 1MB/s. Let us assume a USB stick (C) can trans-
fer data at 100MB/s when connectyed to A or B.
Starting at day zero, the device is now connected to
A and B ten percent of the time, respectively. Fig-
ure 6 shows how the edge weight from A to B adapts
as the USB stick is connected for a number of days
starting from day zero.

Note that both the direct (via the DSL connec-
tion) and the indirect path (via the USB stick) can
be be used by the planner. Some fraction of the
data to be transferred will always be assigned to the
direct path, and as such it will remain utilized.

A.7 Optimization example

We now look at an example to illustrate the process.
The goal of the planner is to find a series of steps that
reach the goal state. In our example, data must be
transported by intermediate devices, and the system
must correctly prioritize durability replicas.

We have three devices, A, B and C. The initial
distribution of files is the following: A has 100 units
of data, 50 of which is of a type that should be made
available, B has 0 units of data, and C has 5 units
of data. A and C are capable of storing 500 units of
data, and B is capable of storing 50 units of data.
A and C never directly connect to each other, but B
is connected to both A and C. In the beginning, no
data is replicated on any of the devices.

17



 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  5  10  15  20

C
o

n
n

ec
ti

o
n

 W
ei

g
h

t

Time (Days)

Indirect
Direct

Figure 6: Evolution of link weight between two devices on the direct connection versus an indirect path via
a USB stick that starts to be periodically connected to either device, starting on day zero.

Initial File Distribution

A=50,50

B=0

C=50

Device Capacities

A = 500

B = 50

C = 500

Connectivity

A - B = 1

B - A = 1

B - C = 1

C - B = 1

Maximum Steps

steps: 10

Figure 7: Summary of system state and environ-
ment, which is used to generate a linear program-
ming problem.

Problem Instance

In this scenario, the goal state should be that C is
storing a replica of all of A’s data and vice-versa.
B should be storing the 50 units of data for avail-
ability. A greedy algorithm will never arrive at this
state. B would take 50 units of data from either A
or C (whichever it was attached to first), and then
the system would not be able to make any further
progress.

The input to the planner is a description of the

scenario, and a number of steps that are allowed in
the final plan. The problem description is shown
below in Figure 7. The goal state is based on the
definitions in 5.1. That is, have all data maxi-
mally durable, the data that is useful for availability
present on all devices, and with minimum cost.

From this specification, a linear programming
problem is generated and passed to a solver. The
result is used to determine the actions at each step,
and must be repeated once for each step.

Generated Plan

The result of the above described process is used to
generate a series of steps that PodBase must take
in order to reach the goal state. We describe be-
low the steps returned by the solver for the example
scenario. The actual solution is a set values of cer-
tain variables in the solution of a linear program.
We translate these results to English for the sake of
clarity.

• Step 1: Copy 50 units of data that are not
needed for availability from A to B

• Step 2: Copy 50 units of data that are not
needed for availability from B to C

• Step 3: Delete all data from B; Copy 50 units
of data from C to B

• Step 4: Copy 50 Units from B to A

• Step 5: Delete 50 all data from B; Copy 50 units
of data needed for availability from A to B
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Minimize

totalcost

Subject to

durable1 = 150.000000

available4 = 50.000000

durable3 = 100.000000

durable4 = 50.000000

durable5 = 50.000000

available1 = 50.000000

available3 = 50.000000

available2 = 50.000000

durable2 = 100.000000

......

fa01 + fa11 + ..... + fabc11 - capicitya =

0 ......

cpya0b1 + 1 cpya1b1 + 1 cpyab0c1 + 1

cpyab1c1 + 1 cpyac0b1 + 1 cpyac1b1 +

1 cpyb0a1 + 1 cpyb0c1 + 2 cpyb0ac1 +

1 cpyb1a1 + 1 cpyb1c1 + 2 cpyb1ac1 + 1

cpyba0c1 + 1

cpyba1c1 + 1 cpybc0a1 + 1 cpybc1a1 + 1

cpyab0c1 + 1 cpyab1c1 + 1 cpyc0b1 + 1

cpyc1b1 + 1 cpyca0b1 + 1 cpyca1b1 + 1

cpycb0a1 + 1 cpycb1a1 + 1 cpyac0b1 + 1

cpyac1b1 + 1

cpybc0a1 + 1 cpybc1a1 - cost1 = 0

......

cost1 + cost2 + cost3 + cost4 + cost5 +

cost6 + cost7 + cost8 + cost9 + cost10 -

totalcost = 0

Figure 8: Simplified snippet of LP program gener-
ated in the example problem. The objective func-
tion in this stage of the formulation is to minimize
the total cost, given that the durability and avail-
ability goals are satisfied (the lines directly follow-
ing “Subject to”). The next constraint ensures that
the files stored on a device in a step never exceed
the capacity of that device (the data being stored in
each category is captured by the variables starting
with f. Each letter following f is a device which the
data is present on, and the following number indicate
what step, and what type (0 = durability, 1 = avail-
ability)). Next, the variables encoding actions are
shown, and they are related to the cost. Finally, the
costs are aggregated into the objective function. A
variable above is always indexed by first the devices
that it is / could be stored on, then the type of file
(availability=1, durability = 0), and finally the step
in the output plan. Action variables (above copy)
also include a target device, in the case of the copy
variables the step is omitted to shorten the variable
names.

• Step 6: Copy 50 units of data needed for avail-
ability from B to C.

The final result of following this plan is the op-
timal goal state. All data is durable, and the data
should be available is present on all devices. At the
intermediate steps, no replicas are made for avail-
ability before the durability goal has been reached.
While this example is simple, the adaptive algorithm
will work in much more complex scenarios. The
units of data and edge weights are set to simple val-
ues for presentational reasons, and do not represent
the values that one would expect while running Pod-
Base.

B Replication comparison

In this section we compare the results from our adap-
tive replication algorithm with those from a simple
greedy replication algorithm. To make the results
comparable, we used the data from the user study
described in 6.5. We replayed the trace from this
user study against an implementation of PodBase
using the greedy algorithm. The rest of this section
describes the results of this experiment.

Figure 9 corresponds to Figure 3 in Section 6.5,
with an additional (right) bar for each household,
which shows the replication state at the end of the
trace when the greedy replication algorithm is being
used, with a replication factor of two. Household 1
chose not to provide their trace for privacy reasons,
and thus we can not include the results.

In households 6, 8 and 10, which have only two de-
vices, the behavior of the two algorithms is almost
identical. In households 2–5 and 9, the adaptive
replication algorithm performed better, showing the
advantages of dynamically calculating the replica-
tion factor in the adaptive algorithms. Additionally,
household 9 benefited from a multi-step replication
plan used by the adaptive algorithm, which was able
to make effective use of a device to transport data.
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Figure 9: The initial (left bar) and final (center bar) replication status of each household. Final results for
the greedy algorithm (right bar) are shown for comparison.
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