
The Fault Detection Problem

Andreas Haeberlen∗ Petr Kuznetsov†

Technical report MPI-SWS-2009-005

Abstract

One of the most important challenges in distributed computing is ensuring that services are correct
and available despite faults. Recently it has been argued that fault detection can be factored out from
computation, and that a generic fault detection service canbe a useful abstraction for building distributed
systems. However, while fault detection has been extensively studied for crash faults, little is known
about detecting more general kinds of faults.

This paper explores the power and the inherent costs of generic fault detection in a distributed system.
We propose a formal framework that allows us to partition theset of all faults that can possibly occur in
a distributed computation into severalfault classes. Then we formulate thefault detection problemfor a
given fault class, and we show that this problem can be solvedfor only two specific fault classes, namely
omission faultsandcommission faults. Finally, we derive tight lower bounds on the cost of solvingthe
problem for these two classes in asynchronous message-passing systems.

Keywords: Fault classes, fault detection problem, message complexity, lower bounds

1 Introduction

Handling faults is a key challenge in building reliable distributed systems. There are two main approaches
to this problem:Fault maskingaims to hide the symptoms of a limited number of faults, so that users can
be provided with correct service in the presence of faults [4,14], whereasfault detectionaims at identifying
the faulty components, so that they can be isolated and repaired [7, 10]. These approaches are largely
complementary. In this paper, we focus on fault detection.

Fault detection has been extensively studied in the contextof “benign” crash faults, where it is assumed
that a faulty component simply stops taking steps of its algorithm [5, 6]. However, this assumption does
not always hold in practice; in fact, recent studies have shown that general faults (also known as Byzantine
faults [15]) can have a considerable impact on practical systems [17]. Thus, it would be useful to apply
fault detection to a wider class of faults. So far, very little is known about this topic; there is a paper by
Kihlstrom et al. [12] that discusses Byzantine fault detectors for consensus and broadcast protocols, and
there are several algorithms for detecting certain types ofnon-crash faults, such as PeerReview [10] and
SUNDR [16]. However, many open questions remain; for example, we still lack a formal characterization
of the types of non-crash faults that can be detected in general, and nothing is known about inherent costs
of detection.

This paper is a first step towards a better understanding of general fault detection. We propose a formal
model that allows us to formulate thefault detection problemfor arbitrary faults, including non-crash faults.
We introduce the notion of afault classthat captures a set offaults, i.e., deviations of system components

∗Max Planck Institute for Software Systems, Campus E1.4, 66123 Saarbrücken, Germany,ahae@mpi-sws.org
†TU Berlin/Deutsche Telekom Laboratories, TEL 4, Ernst-Reuter-Platz 7, 10587 Berlin, Germany,pkuznets@acm.org

1

from their expected behavior. Solving the fault detection problem for a fault classF means finding a
transformationτF that, given any algorithmA, constructs an algorithm̄A (called anextensionof A) that
works exactly likeA but does some additional work to identify and expose faulty nodes. Whenever a fault
instance from the classF appears,Ā must expose at least one faulty suspect (completeness), it must not
expose any correct nodes infinitely long (accuracy), and, optionally, it may ensure that all correct nodes
expose the same faulty suspects (agreement).

Though quite weak, our definition of the fault detection problem still allows us to answer two specific
questions: Which faults can be detected, and how much extra work from does fault detection require from
the extension? To answer the first question, we show that the set of all fault instances can be divided into
four non-overlapping classes, and that the fault detectionproblem can be solved for exactly two of them,
which we callcommission faultsandomission faults. Intuitively, a commission fault exists when a node
sends messages a correct node would not send, whereas an omission fault exists when a node doesnot send
messages a correct nodewouldsend.

To answer the second question, we study themessage complexityof the fault detection problem, that is,
the ratio between the number of messages sent by the most efficient extension and the number of messages
sent by the original algorithm. We derive tight lower boundson the message complexity for commission and
omission faults, with and without agreement. Our results show that a) the message complexity for omission
faults is higher than that for commission faults, and that b)the message complexity is (optimally) linear in
the number of nodes in the system, except when agreement is required for omission faults, in which case it
is quadratic in the number of nodes.

In summary, this paper makes the following four contributions: (1) a formal model of a distributed
system in which various kinds of faults can be selectively analyzed, (2) a statement of the fault detection
problem for arbitrary faults, (3) a complete classificationof all possible faults, including a precise charac-
terization of the set of faults for which the fault detectionproblem can be solved, and (4) tight lower bounds
on the message complexity of the fault detection problem. Viewed collectively, our results constitute a first
step toward understanding the power and the inherent costs of fault detection in a distributed system.

The rest of this paper is organized as follows: We begin by introducing our system model in Section 2
and then formally state the fault detection problem in Section 3. In Section 4, we present our classification
of faults, and we show for which classes the fault detection problem can be solved. In Section 5, we derive
tight bounds on the message complexity, and we conclude by discussing related work in Section 6 and future
work in Section 7.

2 Preliminaries

2.1 System model

LetN be a set ofnodes. Each node has a terminal1 and a network interface. It can communicate with the
other nodes by sending and receiving messages over the network, and it can send outputs to, and receive
inputs from, its local terminal. We assume that processing times are negligible; when a node receives an
input, it can produce a response immediately.

Each messagem has a uniquesource src(m) ∈ N and a uniquedestination dest(m) ∈ N . We assume
that messages are authenticated; that is, each nodei can initially create only messagesm with src(m) = i,
although it can delegate this capability to other nodes (e.g., by revealing its key material). Nodes can also
forward messages to other nodes and include messages in other messages they send, and we assume that a
forwarded or included message can still be authenticated.

1Instead of an actual terminal, nodes may have any other localI/O interface that cannot be observed remotely.

2

A computation unfolds in discreteevents. An event is a tuple(i, I,O), wherei ∈ N is a node on which
the event occurs,I is a set of inputs (terminal inputs or messages) thati receives in the event, andO is a
set of outputs (terminal outputs or messages) thati produces in the event. Anexecutione is a sequence
of events(i1, I1, O1), (i2, I2, O2), We writee|S for the subsequence ofe that contains the events with
ik ∈ S; for i ∈ N , we abbreviatee{i} ase|i. When a finite executione is a prefix of another executione′,
we writee⇂e′. Finally, we write|e| to denote the number of unique messages that are sent ine.

A system is modeled as a set of executions. In this paper, we assume that the network is reliable, that
is, a) a message is only received if it has previously been sent at least once, and b) a message that is sent is
eventually received at least once. Formally, we assume that, for every executione of the system and every
messagem:

m ∈ Ik ⇒ [ik = dest(m) ∧ ∃l < k : (il = src(m) ∧m ∈ Ol)]

(m ∈ Ok ∧ src(m) = ik) ⇒ [∃l : il = dest(m) ∧m ∈ Il]

An open executionis an execution for which only the first condition holds. Thus, an open execution may
contain some messages that are sent, but not received. This definition is needed later in the paper; an actual
execution of the system is never open. Finally, we introducethe following notation for brevity:

• RECV(i,m) ∈ e iff m is a message withi = dest(m) and(i, I,O) ∈ e with m ∈ I.

• SEND(i,m, j) ∈ e iff m is a message withj = dest(m) and(i, I,O) ∈ e with m ∈ O.

• IN(i, t) ∈ e if t is a terminal input and(i, I,O) ∈ e with t ∈ I.

• OUT(i, t) ∈ e if t is a terminal output and(i, I,O) ∈ e with t ∈ O.

Table 2 (in the appendix) contains an overview of the notation we use in this paper.

2.2 Algorithms and correctness

Each nodei is assigned analgorithmAi = (Mi, TIi, TOi,Σi, σ
i
0, αi), whereMi is the set of messagesi can

send or receive,TIi is a set of terminal inputsi can receive,TOi is a set of terminal outputsi can produce,
Σi is a set of states,σi

0 ∈ Σi is the initial state, andαi : Σi × P (Mi ∪ TIi) → Σi × P (Mi ∪ TOi) maps a
set of inputs and the current state to a set of outputs and the new state. Here,P (X) denotes the power set of
X. For convenience, we defineα(σ, ∅) := (σ, ∅) for all σ ∈ Σi.

We make the following four assumptions about any algorithmAi: a) it only sends messages that can
be properly authenticated, b) it never sends the same message twice, c) it discards incoming duplicates and
any messages that cannot be authenticated, and d) it never delegates the ability to send messagesm with
src(m) = i, e.g., by revealing or leakingi’s key material. Note that assumption b) does not affect generality,
sinceAi can simply include a nonce with each message it sends. We alsoassume that it is possible to
decide whetherAi, starting from some stateσx, could receive some set of messagesX in any order (plus an
arbitrary number of terminal inputs) without sending any messages. This trivially holds if|Σi| <∞.

We say that a nodei is correct in executione|i = (i, I1, O1), (i, I2, O2), . . . with respect to an algorithm
Ai iff there is a sequence of statesσ0, σ1, . . . in Σi such thatσ0 = σi

0 and, for allk ≥ 1, αi(σk−1, Ik) =
(σk, Ok). Note that correctness of a nodei implies that the node islive: if i is in a stateσk−1 and receives
an inputI, theni must produce an outputOk such thatαi(σk−1, Ik) = (σk, Ok). If i is not correct ine|i
with respect toAi, we say thati is faulty in e|i with respect toAi.

A distributed algorithmis a tuple(A1, . . . , A|N |), one algorithm per node, such thatMi = Mj for all
i, j. When we say that an executione is an execution of a distributed algorithmA, this implies that each
nodei is considered correct or faulty ine with respect to the algorithmAi it has been assigned. We write
corr(A, e) to denote the set of nodes that are correct ine with respect toA.

3

2.3 Extensions

(Ā, A, µm, µs,XO) is called areductionof an algorithmĀ = (M̄, T̄I, T̄O, Σ̄, σ̄0, ᾱ) to an algorithmA =
(M,TI, TO,Σ, σ0, α) iff µm is a total mapM̄ 7→ P (M), µs is a total mapΣ̄ 7→ Σ, and the following
conditions hold:

X1 T̄I = TI, that is,A accepts the same terminal inputs asĀ;

X2 T̄O = TO ∪XO andTO ∩XO = ∅, that is,A produces the same terminal outputs asĀ, exceptXO;

X3 µs(σ̄0) = σ0, that is, the initial state of̄A maps to the initial state ofA;

X4 ∀m∈M ∃ m̄∈M̄ : µm(m̄) = m, that is, every message ofA has at least one counterpart in̄A;

X5 ∀σ∈Σ ∃ σ̄∈ Σ̄ : µs(σ̄) = σ, that is, every state ofA has at least one counterpart inΣ̄;

X6 ∀σ̄1, σ̄2∈ Σ̄, m̄i, m̄o⊆M̄, ti⊆TI, to ⊆ TO : [ᾱ(σ̄1, m̄i∪ ti) = (σ̄2, m̄o∪ to)] ⇒ [α(µs(σ̄1), µm(m̄i)∪
ti) = (µs(σ̄2), µm(m̄o) ∪ (to \XO))], that is, there is a homomorphism betweenᾱ andα.

If there exists at least one reduction from an algorithmĀ to an algorithmA, we say thatĀ is anextensionof
A. For every reduction(Ā, A, µm, µs,XO) we can construct anexecution mappingµe that maps executions
of Ā to (possibly open) executions ofA as follows:

1. Start withe = ∅.

2. For each new event(i, Ī , Ō), perform the following steps:

(a) ComputeI := (Ī ∩ TIi) ∪ µm(Ī ∩ M̄) andO := (Ō ∩ TOi) ∪ µm(Ō ∩ M̄).

(b) Remove fromI anym ∈M with dest(m) 6= i or RECV(i,m) ∈ e.

(c) Remove fromO anym ∈M with SEND(i,m, j) ∈ e.

(d) For each nodej ∈ N , computeOj := {m ∈ O | src(m) = j}.

(e) If I 6= ∅ orOi 6= ∅, append(i, I,Oi) to e.

(f) For eachj 6= i with Oj 6= ∅, append(j, ∅, Oj) to e.

A simple example of a reduction is the identity(A,A, id, id, ∅). Note that there is a syntactic correspondence
between an extension and its original algorithm, not just a semantic one. In other words, the extension not
only solves the same problem as the original algorithm (by producing the same terminal outputs as the
original), it also solves it in the same way (by sending the same messages in the same order). Recall that our
goal is to detect whether or not the nodes in the system are following a given algorithm; we arenot trying to
find a better algorithm. Next, we state a few simple lemmas about extensions.

Lemma 1 Let Ā andA be two algorithms for which a reduction(Ā,A,µm,µs,XO) exists. Then, if̄e is an
execution in which a nodei is correct with respect tōA, i is correct inµe(ē) with respect toA.

Proof sketch: If i is correct inē|i with respect toĀ, there exists a matching sequence of statesσ̄1, σ̄2, . . .
of Āi in ē|i, and we can use homomorphism X6 to convert it into a sequence of statesσ1, σ2, . . . of Ai in
µe(ē)|i. The proof is by induction over the length ofē|i. For the full proof, see Appendix A.1.2

Note that, if a nodei is correct inē with respect toĀ, then it must be correct inµe(ē) with respect toA, but
the reverse is not true. In other words, it is possible for a node i to be faulty inē with respect toĀ but still
be correct inµe(ē) with respect toA.

4

Lemma 2 Let Ā andA be two algorithms for which a reduction(Ā,A,µm,µs,XO) exists, letē1 be an
execution ofĀ, and letē2 be a prefix ofē1. Thenµe(ē2) is a prefix ofµe(ē1).

Proof: Follows from the wayµe(ē1) is constructed (events are always appended, never removed). 2

Lemma 3 Let Ā andA be two algorithms for which a reduction(Ā,A,µm,µs,XO) exists, and lete be an
execution ofA. Then there exists an executionē of Ā such that a)µe(ē) = e (modulo duplicate messages sent
by faulty nodes ine), and b) a nodei is correct inē with respect toĀ iff it is correct ine with respect toA.

Proof sketch: Given an executione of A, we can construct a matching executionē of Ā essentially by
feeding the same inputs to the correct nodes, and by delivering messages in the same order. This works
because of homomorphism X6. The only two complications are that a) we must ensure that messages are
eventually delivered in̄e even if they have no direct equivalent (viaµm) in e, and b) we must choose the
behavior of the faulty nodes appropriately. For the full proof, see Appendix A.22

2.4 Facts and evidence

To detect faults, and to identify faulty nodes, the correct nodes must collect information about the current
execution. Clearly, no correct node can expect to know the entire execution at any point, since it cannot
observe events on other nodes. However, each node can locally observe its inputs and outputs, and each
input or output rules out some possible executions thatcannotbe the current execution. For example, if a
nodei receives a messagem, this rules out all executions in whichm was never sent. Ifi manages to rule
out all executions in which some setS of nodes is correct, it has established that at least one nodes ∈ S
must be faulty. Thus, we can use sets of plausible executionsto represent a node’s knowledge about the
current execution.

Formally, we define afact ζ to be a set of executions, and we say that a nodei knowsa factζ at the end
of an execution prefixe iff ζ contains all infinite executionse′ wheree|i is a prefix ofe′|i (in other words,
e′ is consistent with all the inputs and outputsi has seen ine). If a node knows two factsζ1 andζ2, it can
combine them into a new factζ3 := ζ1 ∩ ζ2. If the system is running an extension̄A of an algorithmA, we
can map any fact̄ζ about the current execution̄e of Ā to a factζ := {µe(x) |x ∈ ζ̄} aboutµe(ē).

Different nodes may know different facts. Hence, the nodes may only be able to detect a fault if they
exchange information. However, faulty nodes can lie, so a correct node can safely accept a fact from another
node only if it receivesevidenceof that fact. Formally, we say that a messagem is evidence of a factζ iff
for any execution̄e of Ā in which any node receivesm, µ(ē) ∈ ζ. Intuitively, evidence consists of signed
messages. For more details, please see Section 4.

2.5 Fault instances and fault classes

Not all faults can be detected, and some extensions can detect more faults than others. To quantify this, we
introduce an abstraction for an individual ‘fault’. Afault instanceψ is a four-tuple(A,C, S, e), whereA is
a distributed algorithm,C andS are sets of nodes, ande is an infinite execution, such that a)C andS do
not overlap, b) everyc ∈ C is correct ine with respect toA, and c) at least one nodei ∈ S is faulty in e
with respect toA. A fault classF is a set of fault instances, and the nodes inS are calledsuspects.

Intuitively, the goal is for the correct nodes inC to identify at least one faulty suspect fromS. Of course,
an ideal solution would simply identifyall the nodes that are faulty ine with respect toA; however, this is
not always possible. Consider the scenario in Figure 1. In this scenario, the nodes inC know that at least
one of the nodes inS must be faulty, but they do not know which ones, or how many. Thus, the size of the
setS effectively represents the precision with which the fault can be localized. The best case is|S| = 1; this
indicates that the fault can be traced to exactly one node. The worst case isS = N \ C; this indicates that
the nodes inC know that a fault exists somewhere, but they are unable to localize it.

5

G

B

C

D

I
A

L

J

M

O

E

Q

N

C
S

N
P

K

F

H

12

23

5

(a) Actual execution

D

S F

H

7

5

23
D

S F

H

7

16

23
D

S F

H

18

5

23

D

S F

H

7

38

23
D

S F

H

11

12

23
D

S F

H

81

19

23

(b) Alternative explanations forK ’s observation

Figure 1: Example scenario. NodesF andH are supposed to each send a number between1 and10 toD,
who is supposed to add the numbers and send the result toK. If K receives23, it knows that at least one of
the nodes inS = {D,F,H} must be faulty, but it does not know which ones, or how many.

2.6 Environments

Our formulation of the fault detection problem does not require a bound on the number of faulty nodes.
However, if such a bound is known, it is possible to find solutions with a lower message complexity. To
formalize this, we use the notion of anenvironment, which is a restriction on the fault patterns that may
occur in a system. In this paper, we specifically consider environmentsEf , in which the total number of
faulty nodes is limited tof . If a system in environmentEf is assigned a distributed algorithmA, the only
executions that can occur are those in which at mostf nodes are faulty with respect toA.

3 The fault detection problem

Let ν := {FAULTY(X) |X ⊆ N} be a set offault notifications. Then thefault detection problemfor a fault
classF is to find a transformationτF that maps any distributed algorithmA to an extensionĀ := τF (A)
such thatT̄O = TO ∪ ν and the following conditions hold:

C1 Nontriviality: If ē is an infinite execution of̄A andi ∈ N is correct inē with respect toĀ, theni
outputs infinitely many fault notifications in̄e.

C2 Completeness:If (A,C, S, e) is a fault instance inF , ē is an infinite execution such thatµe(ē) = e,
and each nodec ∈ C is correct inē with respect toĀ, then there exists a correct nodec′ ∈ N and a
nodej ∈ S such that eventually all fault notifications output byc′ containj.

C3 Accuracy: If ē is an infinite execution of̄A andc1, c2 ∈ N are any two nodes that are correct inē
with respect toĀ, thenc1 outputs infinitely many fault notifications that do not includec2.

We also consider thefault detection problem with agreement, which additionally requires:

C4 Agreement: If c1 ∈N andc2 ∈N are correct in an execution̄e with respect toĀ and there exists a
nodei∈N such that eventually all fault notifications output byc1 in ē include some nodei∈N , then
eventually all fault notifications output byc2 in ē includei as well.

Note that condition C2 does not require us to detect nodes that are faulty inē with respect toĀ, but
correct inµe(ē) with respect toA. Thus, we avoid the infinite recursion that would result fromtrying to
detect faults in the detector itself. Note also that condition C3 is weaker than the definition of eventual
strong accuracy in [6], which requires that correct nodes eventually output only faulty nodes. This change
is necessary to make the problem solvable in an asynchronousenvironment.

6

F
NO

F
AM

∅=± N)e),(C,φπ(A,

∅=∪+ S)Ce),(C,φπ(A,

F
OM

F
CO

∅=∪± S)Ce),(C,φπ(A,

Figure 2: Classification of all fault instances. The fault detection problem cannot be solved for fault instances
in FNO (Theorem 2) orFAM (Theorem 3), but solutions exist forFOM andFCO (Theorem 4).

4 Which faults can be detected?

In the rest of this paper, we assume that the only facts for which evidence can exist are a) message transmis-
sions, and b) message receptions. Specifically, a properly authenticated messagēm with µm(m̄) = m and
src(m) = i in an execution̄e is evidence of a fact{e | SEND(i,m,dest(m)) ∈ e} aboutµe(ē), and a properly
authenticated messagēm′ with src(m̄′) = i, m ∈ m̄′, anddest(m) = i in an execution̄e is evidence of a
fact {e | RECV(i,m) ∈ e} aboutµe(ē). Note that in some systems it may be possible to construct evidence
of additional facts (e.g., when the system has more synchrony or access to more sophisticated cryptographic
primitives). In such systems, the following results may notapply.

4.1 Definitions

We define twofact mapsφ+ andφ− as follows. Lete be an infinite execution or an execution prefix, and let
C be a set of nodes. Thenφ+(C, e) is the intersection2 of all factsζ for which at least one node inC can
construct evidence ine (note that there is usually no single node that can constructevidence ofall facts), and
φ−(C, e) is the intersection of all factsζ such that, if the complement̄ζ were a fact ine (i.e.,e ∈ ζ), then at
least one node inC could construct evidence of̄ζ in e, but ζ̄ /∈ φ+(C, e). For brevity, we writeφ±(C, e) to
represent both kinds of facts, that is,φ±(C, e) := φ+(C, e) ∩ φ−(C, e).

Intuitively, φ± represents the sum of all knowledge the nodes inC can have ine if they exchange all
of their evidence with each other. Since we have restricted the admissible evidence to messages earlier,
φ+(C, e) effectively represents knowledge about all the messages sent or received ine by the nodes inC,
while φ−(C, e) effectively represents knowledge about all the messagesnot sent or received ine by the
nodes inC.

We also define theplausibility mapπ as follows. LetA be a distributed algorithm,Z a set of facts, and
C a set of nodes. Thenπ(A,Z,C) represents all infinite executionse ∈ Z in which each nodec ∈ C is
correct ine with respect toA. Intuitively, π(A,Z,C) is the set of executions ofA that are plausible given
the facts inZ, and given that (at least) the nodes inC are correct.

A few simple properties ofφ andπ are: 1)C1 ⊆ C2 ⇒ φ(C2, e) ⊆ φ(C1, e), that is, adding evidence
from more nodes cannot reduce the overall knowledge; 2)p1 ⇂p2 ⇒ φ(C, p2) ⊆ φ(C, p1), that is, knowledge
can only increase during an execution; 3)C1 ⊆ C2 ⇒ π(A,Z,C2) ⊆ π(A,Z,C1), that is, assuming
that more nodes are correct can only reduce the number of plausible executions; and 4)Z1 ⊆ Z2 ⇒
π(A,Z1, C) ⊆ π(A,Z2, C), that is, learning more facts can only reduce the number of plausible executions.

2Recall that facts are combined by forming the intersection.Since facts are sets of plausible executions, an execution that is
plausible given two factsζ1 andζ2 must be a member ofζ1 ∩ ζ2.

7

4.2 Fault classes

We define the following fault classes (see also Figure 2):

FNO := {(A,C, S, e) |π(A,φ±(C, e), N) 6= ∅}

FAM := {(A,C, S, e) |π(A,φ±(C, e), N) = ∅ ∧ π(A,φ±(C, e), C ∪ S) 6= ∅}

FOM := {(A,C, S, e) |π(A,φ±(C, e), C ∪ S) = ∅ ∧ π(A,φ+(C, e), C ∪ S) 6= ∅}

FCO := {(A,C, S, e) |π(A,φ+(C, e), C ∪ S) = ∅}

FNO is the class ofnon-observable faults. For executions in this class, the nodes inC cannot even be sure
that the system contains any faulty nodes, since there exists a correct execution of the entire system that is
consistent with everything they see. We will show in Section4.3 that the fault detection problem cannot be
solved for faults in this class.

FAM is the class ofambiguous fault instances. When a fault instance is in this class, the nodes inC
know that a faulty node exists, but they cannot be sure that itis one of the nodes inS. We will show in
Section 4.4 that the fault detection problem cannot be solved for fault instances in this class. Note that
the problem here is not that the faults cannot be observed from C, but that the setS is too small. IfS is
sufficiently extended (e.g., toN \ C), these fault instances become solvable.

FOM is the class ofomission faults. For executions in this class, the nodes inC could infer that one of
the nodes inS is faulty if they knew all the facts, but the positive facts alone are not sufficient; that is, they
would also have to know that some message wasnot sent ornot received. Intuitively, this occurs when the
nodes inS refuse to send some message they are required to send.

FCO is the class ofcommission faults. For executions in this class, the nodes inC can infer that one
of the nodes inS is faulty using only positive facts. Intuitively, this occurs when the nodes inS send some
combination of messages they would never send in any correctexecution.

Theorem 1 (FNO, FAM , FOM , FCO) is a partition of the set of all fault instances.

Proof: First, we show that no fault instance can belong to more than one class. Supposeψ := (A,C, S, e) ∈
FNO; that is, there is a plausible correct executione′ of the entire system. Thenψ can obviously not be in
FAM , sinceπ(A,φ±(C, e), N) cannot be both empty and non-empty. Since all nodes are correct in e′, the
nodes inC∪S in particular are also correct, soψ 6∈ FOM (Section 4.1, Property 3), and they are still correct
if negative facts are ignored, soψ 6∈ FCO. Now supposeψ ∈ FAM . Obviously,ψ cannot be inFOM , since
π(A,φ±(C, e), C ∪ S) cannot be both empty and non-empty. Butψ cannot be inFCO either, since using
fewer facts can only increase the number of plausible executions (Section 4.1, Property 1). Finally, observe
thatψ cannot be in bothFOM andFCO, sinceπ(A,φ+(C, e), C ∪S) cannot be both empty and non-empty.

It remains to be shown that any fault instance belongs to at least one of the four classes. Suppose there is
a fault instanceψ 6∈ (FNO∪FAM∪FOM∪FCO). Sinceψ is not inFNO, we know thatπ(A,φ±(C, e), N) =
∅. But if this is true andψ is not inFAM , it follows thatπ(A,φ±(C, e), C ∪ S) = ∅. Given this and thatψ
is not inFOM , we can conclude thatπ(A,φ+(C, e), C ∪ S) = ∅. But thenψ would be inFCO, which is a
contradiction. 2

4.3 Non-observable faults

Theorem 2 The fault detection problem cannot be solved for any fault classF withF ∩ FNO 6= ∅.

Proof sketch: The proof works by showing that, for any fault instanceψ := (A,C, S, e) ∈ FNO, we can
construct two executions̄egood and ēbad of Ā := τ(A) such that a) all the nodes are correct inēgood, b)
the fault occurs in̄ebad, and c) the two executions are indistinguishable from the perspective of the nodes

8

in C (that is, ēgood|C = ēbad|C). Hence, the nodes inC would have to both expose some node inS (to
achieve completeness in̄ebad) andnot expose any node inS (to achieve accuracy in̄egood) based on the
same information, which is impossible. For the full proof, see Appendix A.3. 2

4.4 Ambiguous faults

Theorem 3 The fault detection problem cannot be solved for any fault classF withF ∩ FAM 6= ∅.

Proof sketch: The proof is largely analogous to that of Theorem 2, except that we now construct two
executions̄e∈S and ē6∈S of Ā := τ(A) such that a) in̄e∈S the faulty node is a member ofS, b) in ē6∈S all
the nodes inS are correct, and c) the two executions are indistinguishable fromC. For the full proof, see
Appendix A.4. 2

4.5 Omission and commission faults

Corollary 1 If the fault detection problem can be solved for a fault classF , thenF ⊆ FOM ∪ FCO.

Theorem 4 There is a solution to the fault detection problem with agreement for the fault classFOM ∪FCO.

For a transformation that solves the fault detection problem for this class, please refer to the proof of Theo-
rem 8, which appears in Appendix A.8.

5 Message complexity

In this section, we investigate how expensive it is to solve the fault detection problem, that is, how much
additional work is required to detect faults. The metric we use is the number of messages that must be sent
by correct nodes. (Obviously, the faulty nodes can send arbitrarily many messages). Since the answer clearly
depends on the original algorithm and on the actions of the faulty nodes in a given execution, we focus on
the following two questions: First, what is the maximum number of messages that may benecessaryfor
some algorithm, and second, what is the minimum number of messages that issufficientfor any algorithm?

5.1 Definitions

If τ is a solution of the fault detection problem, we say that themessage complexityγ(τ) of τ is the largest
number such that for allk, there exists an algorithmA, an executione of A, and an execution̄e of τ(A)
such that

(µe(ē) = e) ∧ (|e| ≥ k) ∧

[

| {m̄ | SEND(i, m̄, j) ∈ ē ∧ i ∈ corr(τ(A), ē)} |

|e|
≥ γ(τ)

]

In other words, the message complexity is the maximum numberof messages that must be sent by correct
nodes in anȳe per message sent in the correspondinge := µe(ē). The message complexity of the fault
detection problem as a whole is the minimum message complexity over all solutions.

5.2 Commission faults

In this section, we present a collection of tight lower bounds for solving various instances of the fault
detection problem. First we show that message complexity ofthe fault detection problem in the environment
Ef for both commission and omission faults is optimally linearin f .

9

Theorem 5 Any solutionτ of the fault detection problem forFCO in the environmentEf has message
complexityγ(τ) ≥ f + 2, provided thatf + 2 < |N |.

Proof sketch: We show that no solutionτ can achieve completeness unless, for each pair of messages
(m1,m2) received by correct nodes, there is at least one correct nodethat learns about bothm1 andm2.
Since up tof nodes can be faulty inEf , the cheapest way to achieve this is to forward each message to
the same set off + 1 nodes. Since each message must also be sent to its destination, the total message
complexity is at leastf + 2. For the full proof, see Appendix A.5.2

Theorem 6 The message complexity of the fault detection problem with agreement forFCO in the environ-
mentEf is at mostf + 2, provided thatf + 2 < |N |.

Proof sketch: We construct a solutionτ1 that requires the correct nodes to forward a copy of each incoming
message to a setω of f + 1 different nodes. Since at mostf nodes can be faulty, there is at least one correct
nodec ∈ ω that has enough information to detect each commission fault. When this node detects a fault on
another nodej, it constructs a proof of misbehavior and uses reliable broadcast to forward the proof to all
the other nodes. Since the proof contains at most two messages, and since each node can be exposed at most
once, the broadcast step does not affect the message complexity. For the full proof, see Appendix A.6.2

Corollary 2 The message complexity of the fault detection problem (withor without agreement) forFCO in
environmentEf is f + 2, provided thatf + 2 < |N |.

5.3 Omission faults

Theorem 7 Any solutionτ of the fault detection problem forFOM in the environmentEf has message
complexityγ(τ) ≥ 3f + 4, provided thatf + 2 < |N |.

Proof sketch: To achieve completeness and accuracy, every solutionτ must ensure that at least one correct
node learns all messages that were sent or received by the correct nodes. However, when a nodec learns
about a messagem that was supposedly sent by some other nodej, it cannot know whetherj is correct, soc
cannot be sure thatmwill actually reachdest(m) unless it forwardsm to dest(m) itself. Since up tof nodes
can be faulty inEf , at least some setω with |ω| ≥ f + 1 must learn each message, and, for eachc ∈ ω,
each message must be forwarded three times: once from the source toc, once fromc to the destination, and
once from the destination toc. Thus, the message complexity is at least1 + 3 · (f + 1) = 3f + 4. For the
full proof, see Appendix A.7.2

Theorem 8 The message complexity of the fault detection problem forFOM in the environmentEf is at
most3f + 4, provided thatf + 2 < |N |.

Proof sketch: We construct a solutionτ2 that forwards each message up to three times from or to a set of
f + 1 nodes. Thus, the message complexity ofτ2 is 3f + 4. For the full proof, see Appendix A.8.2

Interestingly, if we additionally require agreement, thenthe optimal message complexity of the fault detec-
tion problem with respect to omission faults is quadratic in|N |, under the condition that at least half of the
nodes may fail. Intuitively, if a majority ofN is known to be correct, it should be possible to delegate fault
detection to a setω with |ω| = 2f + 1, and to have the remaining nodes follow the majority ofω. This
would reduce the message complexity to approximately|N | · (2f + 1).

Theorem 9 Any solutionτ of the fault detection problem with agreement forFOM in the environmentEf

has message complexityγ(τ) ≥ (|N | − 1)2, provided that|N |−1
2 < f < |N | − 2.

10

Fault class Fault detection problem
Fault detection problem

with agreement

FCO
f + 2 f + 2

(Corollary 2) (Corollary 2)

FOM
3f + 4 (|N | − 1)2

(Theorems 7 and 8) (Theorems 9 and 10)

Table 1: Message complexity in environments with up tof faulty nodes.

Proof sketch: In contrast to commission faults, there is no self-contained proof of an omission fault; when
a node is suspected of having omitted a messagem, the suspicion can always turn out to be groundless
whenm eventually arrives. We show that, under worst-case conditions, such a ‘false positive’ can occur
after every single message. Moreover, since agreement is required, a correct node must not suspect (or stop
suspecting) another node unless every other correct node eventually does so as well. Therefore, after each
message, the correct nodes may have to ensure that their own evidence is known to all the other correct
nodes, which in the absence of a correct majority requires reliable broadcast and thus at least(|N | − 1)2

messages. For the full proof, see Appendix A.9.2

Theorem 10 The message complexity of the fault detection problem with agreement forFOM in the envi-
ronmentEf is at most(|N | − 1)2, provided thatf + 2 < |N |.

Proof sketch: We construct a solutionτ3 that sends each message via reliable broadcast, and we show that
the message complexity ofτ3 is (|N | − 1)2. For the full proof, see Appendix A.10.2

5.4 Summary

Table 1 summarizes the results in this section. Our two main results are that a) detecting omission faults
has a substantially higher message complexity than detecting commission faults, and that b) the message
complexity is generally linear in the failure boundf , except when the fault class includes omission faults
andagreement is required, in which case the message complexityis quadratic in the system size|N |.

6 Related work

There is an impressive amount of work on fault detection in the context offailure detectors(starting from the
original paper by Chandra and Toueg [6]). However, literature on failure detectors conventionally assumes
crash-fault models, and usually studies theoretical bounds on the information about failures that is necessary
to solve various distributed computing problems [5], without focusing on the costs of implementing failure
detectors.

Faults beyond simple crashes have been extensively studiedin the context of arbitrary (Byzantine) fault
tolerance (starting from the original paper by Lamport et al. [15]). Byzantine fault-tolerant systems aim
to keep faults from becoming “visible” to the system users. One example is Castro and Liskov’s Practical
Byzantine fault-tolerance (PBFT) [4] that extends Lamport’s state-machine replication protocol [14] to the
Byzantine failure model. However, BFT systems do not detectand expose faulty nodes.

In the context ofsynchronousByzantine agreement algorithms, Bar-Noy et al [2] use the terms “fault
detections” and “fault masking” in a more restrictive manner than this paper does. In [2], a processor in an
agreement protocol is said to be “detected” if all correct processors agree that the processor is faulty. All
subsequent actions of this processor are then ignored and thus “masked”.

11

Also with respect to Byzantine agreement algorithms, Bracha [3] describes a protocol in which all
messages are broadcast, and in which all nodes track the state of every other node in order to identify
messages that could not have been sent by a correct node.

Intrusion detection systems (IDS) can detect a limited class of protocol violations, for example by look-
ing for anomalies [7] or by checking the behavior of the system against a formal specification [13].

A technique that statistically monitors quorum systems andraises an alarm if the failure assumptions are
about to be violated was introduced in [1]. However, this technique cannot identify which nodes are faulty.

To the best of our knowledge, Kihlstrom et al. [12] were the first to explicitly focus on Byzantine fault
detection. The paper also gives informal definitions of the commission and omission faults. However, the
definitions in [12] are specific to consensus and broadcast protocols.

Our notions of facts and evidence in a distributed system areinspired by the epistemic formalism of
Halpern and Moses [11].

The results in this paper have important consequences for research onaccountabilityin distributed com-
puting. Systems like PeerReview [10] provide accountability by ensuring that faults can eventually be
detected and irrefutably linked to a faulty node. Since fault detection is an integral part of accountability,
this paper establishes an upper bound on the set of faults forwhich accountability can be achieved, as well
as a lower bound on the worst-case message complexity. Note that practical accountability systems have
other functions, such as providing more detailed fault notifications, which we do not model here.

7 Conclusion and future work

In reasoning about computing systems, it is very important to find the right language. Somewhat danger-
ously, intuitive claims sometimes become “folklore” before they are actually stated precisely and proved.
For example, exact bounds on the information about crash failures needed for solving agreement, though
informally anticipated earlier [8, 14], were captured precisely only with the introduction of failure detec-
tors [6], and especially the notion of the weakest failure detector [5].

Similarly, this paper has developed a language for reasoning about fault detection with general fault
models (beyond simple crash faults). We have proposed a framework in which generic faults can be pre-
cisely defined and classified. Unlike crash faults, generic faults cannot be defined without reference to an
algorithm, which is why we have introduced the expected system behavior into the definition. To determine
the inherent costs of generic fault detection, we have proposed a weak definition of the fault detection prob-
lem, and we have derived exact bounds on the cost of solving itin asynchronous message-passing systems
where nodes are able to digitally sign their messages.

The framework we have presented can also be used to study fault detection in other system models.
If the model is weakened or strengthened (e.g., by varying the assumptions about the network, the degree
of synchrony, or the available cryptographic primitives),the kinds of evidence available to correct nodes
can change, as can the set of executions that are plausible given some specific evidence. This change,
in turn, affects the ability of correct nodes to detect and isolate faulty nodes. For instance, if bounds on
communication and processing times are known, it is possible to establish in finite time that an omission
fault has occurred, and the culprits can safely be suspectedforever. The model could also be changed by
introducing bounds on the message size and/or the set of statesΣ. These changes would likely increase the
message complexity and reduce the size of the fault classes for which detection is possible.

Our framework can be used to study different variants of the fault detection problem. The (weak)
formulation of the problem chosen in this paper was primarily instrumental for establishing impossibilities
and complexity lower bounds that capture inherent costs of detection in the asynchronous systems. In
other scenarios, however, different formulations may makemore sense. For example, accuracy could be
strengthened such that eventually no correct node is suspected by any correct node; this would require

12

stronger synchrony assumptions [6, 8]. On the other hand, completeness could be relaxed in such a way
that faults must only be detected with high probability. Preliminary evidence suggests that such a definition
would substantially reduce the message complexity [10].

In conclusion, we believe that this work is a step toward a better understanding of the costs and limita-
tions of fault detection in distributed systems. We also believe that this work could be used as a basis for
extending the spectrum of fault classes with new intermediate classes, ranging between the “benign” crash
faults (which have proven to be too restrictive for modern software) and the generic but rather pessimistic
Byzantine faults.

References

[1] Lorenzo Alvisi, Dahlia Malkhi, Evelyn Tumlin Pierce, and Michael K. Reiter. Fault detection for
Byzantine quorum systems.IEEE Transactions on Parallel and Distributed Systems, 12(9):996–1007,
2001.

[2] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. Shifting gears: Chang-
ing algorithms on the fly to expedite Byzantine agreement. InProceedings of the 6th Annual ACM
Symposium on Principles of Distributed Computing (PODC ’87), pages 42–51, August 1987.

[3] Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation,
75(2):130–143, November 1987.

[4] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.ACM
Transactions on Computer Systems, 20(4):398–461, November 2002.

[5] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for solving
consensus.Journal of the ACM, 43(4):685–722, July 1996.

[6] Tushar Deepak Chandra and Sam Toueg. Unreliable failuredetectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, March 1996.

[7] Dorothy E. Denning. An intrusion-detection model.IEEE Transactions on Software Engineering,
13(2):222–232, 1987.

[8] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On theminimal synchronism needed for dis-
tributed consensus.Journal of the ACM, 34(1):77–97, January 1987.

[9] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and related prob-
lems. Technical Report TR94-1425, Cornell University, Computer Science Department, May 1994.

[10] Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel. PeerReview: Practical accountability for
distributed systems. InProceedings of the 21st ACM Symposium on Operating Systems Principles
(SOSP ’07), pages 175–188, October 2007.

[11] Joseph Y. Halpern and Yoram Moses. Knowledge and commonknowledge in a distributed environ-
ment.Journal of the ACM, 37(3):549–587, July 1990.

[12] Kim Potter Kihlstrom, Louise E. Moser, and P. Michael Melliar-Smith. Byzantine fault detectors for
solving consensus.The Computer Journal, 46(1):16–35, January 2003.

13

[13] Calvin Ko, George Fink, and Karl Levitt. Automated detection of vulnerabilities in privileged pro-
grams using execution monitoring. InProceedings of the 10th Annual Computer Security Application
Conference, December 1994.

[14] Leslie Lamport. The part-time parliament.ACM Transactions on Computer Systems, 16(2):133–169,
May 1998.

[15] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.ACM Trans-
actions on Programming Languages and Systems, 4(3):382–401, July 1982.

[16] Jinyuan Li, Maxwell Krohn, David Mazières, and DennisSasha. Secure untrusted data repository
(SUNDR). InProceedings of the 6th USENIX Symposium on Operating SystemDesign and Imple-
mentation (OSDI ’04), pages 121–136, December 2004.

[17] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden. Tolerating Byzantine faults in
transaction processing systems using commit barrier scheduling. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP ’07), pages 57–72, October 2007.

A Proofs

A.1 Reduction preserves correctness

Lemma 1 Let Ā andA be two algorithms for which a reduction(Ā, A, µm, µs,XO) exists. Then, if̄e is an
execution in which a nodei is correct with respect tōA, i is correct inµe(ē) with respect toA.

Proof: If i is correct inē with respect toĀ, there exists a sequence of statesσ̄1, σ̄2, . . . such that for all
k ≥ 1, ᾱi(σ̄k−1, Īk) = (σ̄k, Ōk) (whereĪk andŌk are the inputs and outputs in thek.th event of̄e|i). First,
we observe that events inµe(ē)|i can only be generated by rule 2e, and never by rule 2f. To see why, assume
the contrary, that is, some event(i, ∅, Oi) is added toµe(ē) in response to another event(j, Ij , Oj) in ē
because there exists a messagemj ∈ Oj such that∃m′

j ∈ µm(mj) with src(m′
j) = i. But, since we have

assumed that̄A never requires any node to delegate its capability to sign messages, and thati is correct with
respect toĀ, j could only have sentmj if it previously receivedm′

j directly or indirectly fromi. But that
means that, at the time the event is added,SEND(i,m′

j ,dest(m′
j)) ∈ µe(ē), somj would have been removed

in rule 2c, which is a contradiction.
Now we are ready to prove the claim by induction. Letξ(k) be the index of the event in̄e|i that caused

the event with indexk to be added toe|i (obviously, ξ(k + 1) > ξ(k)). Also, let ξ(0) := 0, and let
σk := µs(σ̄ξ(k)). Our induction hypothesis is that a)i is correct in the prefix ofe|i that consists of the first
k events,and thatσ0, . . . , σk is the corresponding sequence of states. The proof is by induction overk. For
k = 0, the claim holds because of requirement X3.

Assume the hypothesis holds up tok − 1. We begin by showing thatµs(σ̄ξ(k)−1) = µs(σ̄ξ(k−1)). If
ξ(k) = ξ(k − 1) + 1, this is trivially true. Otherwise, we know that rule 2e was never triggered for the
events in between, so, in eventsξ(k − 1) + 1 . . . ξ(k) − 1, i did not receive any terminal inputs, did not
produce any terminal outputs inTO, and any messagesi received were either duplicates or mapped to⊥ by
µm, neither of which would cause a state transition inA. Thus, because of homomorphism X6 and because
α(σ, ∅) = (σ, ∅), we know thatµs(σ̄ξ(k−1)+j) = µs(σ̄ξ(k−1)+j+1)) for all 0 ≤ j < ξ(k) − ξ(k − 1).

Now consider the transition from eventξ(k) − 1 to eventξ(k) in ē. Let ¯Im := Īξ(k)−1 ∩ M̄ be the
messages received byi in this event, and let̄It := Īξ(k)−1 ∩ T̄I be the terminal inputs it received. Also, let
Ōm := Ōξ(k)−1 ∩ M̄ be the messages it sent, and letŌt := Ōξ(k)−1 ∩ TO andŌx := Ōξ(k)−1 ∩XO be
the terminal outputs it produced. From rule 2a, we know thatIk = µm(Im) ∪ It (minus any duplicates and

14

messages withdest(m) 6= i, to whichA would not have responded anyway) andOk = µm(Om)∪Ot. Since
i is correct inē|i with respect toĀ, we also know that̄α(σ̄ξ(k)−1, ¯Im ∪ Īt) = (σ̄ξ(k), Ōm ∪ Ōt ∪ Ōx), and
therefore, according to homomorphism X6,α(µs(σ̄ξ(k)−1), µm(Īm) ∪ Īt) = (µs(σ̄ξ(k)), µm(Ōm) ∪ Ōt).
Putting everything together, we getα(σk−1, Ik) = (σk, Ok), which is the hypothesis fork. 2

A.2 Existence of executions of the extension that map to a specific execution

Lemma 3 Let Ā andA be two algorithms for which a reduction(Ā, A, µm, µs,XO) exists, and lete be an
execution ofA. Then there exists an executionē of Ā such that a)µe(ē) = e (modulo duplicate messages sent
by faulty nodes ine), and b) a nodei is correct inē with respect toĀ iff it is correct ine with respect toA.

Proof: Let e be an arbitrary execution ofA, and letC be the set of nodes that are correct ine with respect to
A. We can iteratively construct an executionē of Ā with µe(ē) = e andC̄ = C (whereC̄ is the set of nodes
that are correct in̄e with respect toĀ) as follows. During the construction, we will maintain the following
three invariants: After mapping each prefixx := e1, . . . , ek of e to a prefixx̄ of ē, 1) µe(x̄) = x (modulo
duplicates sent by faulty nodes), 2) for each distinct messagem that is in flight inx, RECV(dest(m),m) 6∈ x̄
and there exists a messagem̄ with µm(m̄) = m anddest(m̄) = dest(m) that is in flight inx̄, and 3) ifi is
correct,σ is the statei is in afterx, andσ̄ is the statei is in afterx̄, thenµs(σ̄) = σ.

Initially, x = x̄ = ∅, so all three invariants trivially hold. Then we perform thefollowing two steps
for eachek = (ik, Ik, Ok) of e. First, we construct a set̄Ik by taking the terminal inputs fromIk and,
for each messagem ∈ Ik, a messagēm with µm(m̄) = m anddest(m̄) = dest(m) that has not yet been
delivered inē (which must exist according to invariant 2). Ifik ∈ C, we then construct̄Ok by evaluating
ᾱik ; otherwise we simply use the terminal outputs inOk plus, for each messagem in Ok, some messagēm
with µm(m̄) = m. Then we add(ik, Īk, Ōk) to ē.

After the first step, all three invariants still hold. To see why the first invariant holds, we consider what
rules inµe could have been invoked by the addition of the new event. Rule2f cannot have been invoked
because nodes did not share their key material inē, rule 2c affects only duplicate messages sent ine, and
rule 2b cannot have been invoked because, according to invariant 2, the messages we just delivered were
sent toik and have not been delivered before. Hence,exactly oneevent(iy, Iy, Oy) has been added toe
(through rule 2e). Since events generated by rule 2e always occur on the same node as the original event,
we know thatiy = ik. Furthermore, by construction, the set of terminal in-/outputs in Īk and Ōk is the
same as inIk andOk (except for possible fault notifications in̄Ok), and we knowµm(Īk ∩ M̄) = (Ik ∩M)
because of the way we chose the messages inĪk. It remains to be shown thatµm(Ōk ∩ M̄) = (Ok ∩M) if
ik is correct; this is the case because of the homomorphism X6 betweenᾱ andα. Hence, according to the
definition of rule 2a,Iy = Ik andOy = Ok. The second invariant holds because the only new messages in
flight in x are the ones sent inek. We have already seen that for eachm ∈ Ok, Ōk contains a message that
maps tom, which is now in flight inx̄. Finally, the third invariant holds because of homomorphism X6.

If we used only the first step, messages ofĀ that do not map to a message ofAwould never get delivered.
Hence the second step, which works as follows: We begin by determining the set̄X of messages̄m that are
currently in flight inp̄ and haveµm(m̄) = ⊥. For each nodej, we then add an event(j, Īj , Ōj) to ē, where
Īj contains the messages in̄X whose destination isj, andŌj is calculated by invokinḡαj . Because of
homomorphism X6, and becauseαj(σ, ∅) = (σ, ∅), we know that for any messagēm ∈ Ōj , µm(m̄) = ⊥;
further, if σ̄old is the old state ofj andσ̄new is its new state, we know thatµs(σ̄old) = µs(σ̄new), that is,j’s
state with respect to the original algorithmA does not change.

After the second step, all three invariants still hold. The first invariant holds because no event has been
added byµe (recall that there were no terminal inputs, no terminal outputs fromTO, and that for allm̄ we
added,µm(m̄) = ⊥; hence, after rule 2a, the setsI andO would be empty). The second invariant holds

15

because the set of in-flight messages that map toA’s messages has not changed. The third invariant holds
because it held after the first step and, as explained earlier, µs(σ̄old) = µs(σ̄new).

We still need to show that̄e is an execution, and that̄C = C. ē is an execution because a) any messages
that map toA’s messages are delivered at the same point as ine, and b) any other messages are delivered
after at most|N | + 1 events. Hence, no messages remain undelivered, and by construction, no messages
can be delivered unless they have previously been sent. We know thatC ⊆ C̄ because we have derived
all events on correct nodes using their transition functions. To see why(N \ C) ⊆ (N \ C̄), consider that
eachj ∈ (N \ C) is faulty because it has performed an incorrect state transition, which will mapped to an
incorrect state transition in̄e. 2

A.3 The fault detection problem cannot be solved for non-observable faults

Theorem 2 The fault detection problem cannot be solved for any fault classF withF ∩ FNO 6= ∅.

Proof: The proof works by showing that, for any fault instanceψ := (A,C, S, e) ∈ FNO, we can construct
two executions̄egood and ēbad of Ā := τ(A) such that a) all the nodes are correct inēgood, b) the fault
occurs inēbad, and c) the two executions are indistinguishable from the perspective of the nodes inC (that
is, ēgood|C = ēbad|C). Hence, the nodes inC would have to both expose some node inS (to achieve
completeness in̄ebad) and not expose any node inS (to achieve accuracy in̄egood) based on the same
information, which is impossible.

Suppose there is a solutionτ to the fault detection problem for some classF with ψ := (A,C, S, e) ∈
FNO ∩ F , and letebad := e. Sinceψ ∈ FNO, there exists an executionegood ∈ π(A,φ±(C, e), N). By
Lemma 3, there exists an execution ofĀ that is mapped toegood by µe and in which all nodes are correct
with respect toĀ; we can simply choose that execution to beēgood.

Next, we construct̄ebad from ēgood. We assume that all the nodes inN \C collude; hence, we can freely
choose the behavior of these nodes without consideringĀ. First, we construct an execution̄e1 as follows:
We remove from̄egood all events(ik, Ik, Ok) whereik ∈ N \ C, and then we add aRECV(m, j) event for
everym sent by a node inC to a nodej ∈ N \ C, as well as aSEND(i,m, j) event for everym received by
a nodei ∈ C from a nodej ∈ N \C. When adding events for messagesm with µm(m) 6= ⊥, we add them
in the same order as inebad. This already ensures thatē1|C = ēgood|C .

However,ē1 is not a valid execution yet because inē1, a nodek ∈ N \ C can send a messagem that
was originally sent by a nodei ∈ C to another nodej ∈ N \ C, j 6= k. Since we assumed that faulty
nodes cannot forge the signature of a correct node,k cannot do this without having receivedm from j first.
Therefore, after everyRECV(m, j) event withj ∈ N \C, we add aSEND(j, FWD(m), k) / RECV(k, FWD(m))
pair for every nodek ∈ N \C, k 6= j, whereFWD is a message that is not in̄M , thus arriving at an execution
ē2. Note that, since the system is asynchronous, we can choose the message delays in̄e2 arbitrarily.

ē2 is a valid execution, but we do not yet haveµe(ē2) = ebad. However, the only missing events are
terminal in/outputs on the nodes inN \ C, as well asSEND andRECV events for messages sent among the
nodes inN \ C. The former can easily be added by insertingIN and OUT events. To add the latter, we
proceed as follows: For each messagem sent from a nodej to a nodek, j, k ∈ N \C, we pick anym̄ ∈ M̄
with µm(m̄) = m and insertSEND(j,m, k) andRECV(k,m) events. Of course, any inserted events must be
added in the same sequence in which they occurred inEbad. Note that, since the nodes inN \C have shared
their key material, there is no need to broadcast the messages among them. The result is the executionēbad,
and we haveµe(ēbad) = ebad.

Now let c ∈ C be a correct node. Because of nontriviality,c must output infinitely many fault noti-
fications inēgood and ēbad. Because of completeness, the notifications inēbad must eventually all contain
some non-empty subset ofS. Let s be a node in that subset. Because of accuracy, infinitely manyof the

16

notifications in̄egood must not contains. But becausēegood|C = ēbad|C andĀ is deterministic,cmust output
thesamefault notifications in̄egood andēbad. This is a contradiction. 2

A.4 The fault detection problem cannot be solved for ambiguous fault instances

Theorem 3 The fault detection problem cannot be solved for any fault classF withF ∩ FAM 6= ∅.

Proof: The proof is largely analogous to that of Theorem 2, except that we now construct two executions
ē∈S andē6∈S of Ā := τ(A) such that a) in̄e∈S the faulty node is a member ofS, b) in ē6∈S all the nodes in
S are correct, and c) the two executions are indistinguishable fromC.

Suppose there is a solutionτ to the fault detection problem for some classF with ψ := (A,C, S, e) ∈
FAM ∩F , and lete∈S := e. Sinceψ ∈ FAM , we haveπ(A,φ±(C, e∈S), N) = ∅, butπ(A,φ±(C, e∈S), C∪
S) 6= ∅. Let e6∈S be an execution inπ(A,φ±(C, e∈S), C ∪ S); note that ine6∈S , all the nodes inC ∪ S are
correct with respect to A. Let̄e6∈S be an execution withµe(ē6∈S) = e6∈S in which all the nodes inC ∪ S are
correct with respect tōA. Such an execution must exist according to Lemma 3.

Our goal is to construct an executionē∈S such thatµe(ē∈S) = e∈S andē∈S |C = ē6∈S |C . If we assume
that all the nodes inN \ C are faulty and collude in̄e∈S , this can be done as follows. We start with
ē∈S := ē6∈S |C and, for every messagem that was sent by a nodes ∈ N \ C to a nodec ∈ C, we add a
transmission eventSEND(s,m, c) to ē∈S . Similarly, for every messagem that was sent fromC toS, we add
a receive event tōe∈S . Finally, for each messagem that is sent between two nodess1, s2 ∈ N \ C in e∈S ,
s1 ands2 can send some messagem̄ with µm(m̄) = m in ē∈S . This ensures thatµe(ē∈S) = e∈S .

Now consider anyc ∈ C. Because of nontriviality,c must output infinitely many fault notifications
in ē∈S and ē6∈S . Because of completeness, the notifications inē∈S must eventually all contain somes ∈
S, and because of accuracy, infinitely many of the notifications in ē6∈S must not contains. But because
ē∈S |C = ē6∈S |C andĀ is deterministic,c must output thesamefault notifications in̄e∈S andē6∈S . This is a
contradiction. 2

A.5 Lower bound for commission faults

Theorem 5 Any solutionτ of the fault detection problem forFCO in the environmentEf has message
complexityγ(τ) ≥ f + 2, provided thatf + 2 < |N |.

Proof: The claim follows if, for any givenk, we can construct an executionek of some algorithmA such
that any solutionτ(A) must send at least(f + 2) · |ek| messages in any executionēk with µe(ēk) = ek.

We begin by choosing the algorithmA as follows. Each nodei locally maintains a setBi of bitstrings,
which is initially empty. Wheni receives an input(j, x) from its local terminal, it checks whetherx ∈ Bi;
if so, it ignores the input, otherwise it addsx to Bi and sends a messagex to nodej. Note there is only
one type of commission fault, namely sending the same bitstring to two different correct nodes. For any
k ≥ 1, we can construct anek such that a single nodei receivesk inputs whose bitstrings are all different
and whose node identifiers are from a specific setX, which we define below. Note thati sendsk messages
in ek, so|ek| = k.

First, we observe thatτ(A) cannot achieve completeness unless it ensures that, for each pair of messages
(m1,m2) that is received by correct nodes, there is at least one correct nodec that learns about bothm1 and
m2. If this were not the case for some pair of messages, then it could be that this pair was a duplicate, and
τ would not be able to detect this. However, sinceτ cannot be sure that any particular node is correct with
respect toτ(A), the only way to achieve this goal is to ensure that each pair of messages is made known to
at leastf + 1 different nodes. Since at mostf nodes can be faulty inEf , this ensures that at least one of
them is correct.

17

Next, we show thatτ cannot send messages in batches. According to homomorphismX6, τ(A) must
send at least one message wheneverA sends one, and since the terminal inputs arrive one by one inek, A
also sends messages one by one, soτ(A) has no opportunity to combine the original transmissions. We have
seen earlier that correct nodes must forward messages to certain other nodes, andτ could potentially batch
those; however, since the original transmissions are driven by terminal inputs, no node can be sure at any
point that there will be a next message. Thus, if any transmission were delayed, it could be that this message
was the last one, and it might never be sent.

The cheapest way to ensure that each pair of messages is seen by f + 1 different nodes is to forward
each message to thesameset of nodesω with |ω| = f + 1. This can be done withf messages if the original
recipient belongs toω; however, whatever the set is, we can adjust the setX of recipients inek such that it
does not contain any nodes fromω (this is possible only if there are other nodes besides thef + 1 nodes in
ω and the senderi; hence the restriction tof +2 < |N |). Therefore,τ(A) will need at least one message for
each of thek original transmissions inek plusf + 1 messages to forward each of them toω, which amounts
to (f + 2) · k messages in total. 2

A.6 Upper bound for commission faults

Theorem 6 The message complexity of the fault detection problem with agreement forFCO in the environ-
mentEf is at mostf + 2, provided thatf + 2 < |N |.

Proof: The claim follows if we can construct at least one transformation that solves the problem with
agreement forFCO in Ef and, in any execution̄e with µe(ē) = e, at most(f + 2) · |e| messages are sent by
correct nodes in̄e.

We choose the transformationτ1 that works as follows: Every correct nodei takes each messagem it
receives, attaches to it the complete sequence of steps it has taken so far, and then forwardsm to a fixed
set of nodesω with |ω| = f + 1. Note that, since messages are authenticated,i effectively commits to a
particular execution. Whenever the nodes inω receive a forwarded message, they recursively extract all the
sequences of steps it contains (note that each message in a sequence of steps contains another sequence of
steps), and they combine them with the sequences they have seen previously. Finally, for every nodej ∈ N ,
they check the following two conditions: whether 1) there isa sequence of steps fromj that is not correct
with respect toAj, and whether 2) they find two sequences of steps fromj neither of which is a prefix of
the other. If either of these is the case, they take the (at most two) messages that contain these sequences of
steps and use reliable broadcast to forward them to all the other nodes in the system. When any correct node
receives such messages via reliable broadcast, it repeats the above checks and, if successful, it exposesj; if
the tests fail, it does not forward the message further.

Complexity:Clearly, τ1 has message complexityf + 2; there is no way for the faulty nodes to cause
a correct node to send additional messages without also adding new messages toµe(ē), and the reliable
broadcast step requires at most a fixed number of messages, since each of the nodes inN can be exposed at
most once. Hence, we only need to show thatτ1 solves the fault detection problem with agreement forFCO

in environmentEf .
Completeness:We begin by showing that, to detect faults inFCO, it is sufficient to know the messages

received by correct nodes. Recall that(A,C, S, e) ∈ FCO iff π(A,φ+(C, e), C ∪ S) = ∅, but according to
completeness, it must be exposed only if all the nodes inC are correct, soφ+(C, e) corresponds to all the
message sent or received by correct nodes. Now letφR(C, e) be only the facts that correspond to messages
receivedby correct nodes. If there were some executione′ ∈ π(A,φR(C, e), C ∪ S), we can construct an
executione′′ ∈ π(A,φ+(C, e), C ∪ S) by taking the prefixx of e′ until the last message is sent fromS to
C, and then delivering any extra messages sent fromC to S afterx. The only way for the nodes inC to

18

distinguishe′′ from e′ is if any required messages are sent fromS to C afterx that are not received byC;
however, this would require a negative fact.

Now let c be a correct node inω (which must exist because|ω| > f). Since each correct node forwards
all messages it receives to each node inω, c eventually learnsφR(C, e). cmay learn other facts as well (e.g.,
messages received by faulty nodes), but, according to the lemma 4 in Section 4.1, knowing more facts can
only shrink the set of plausible executions, and thus cannotpreventc from detecting a commission fault.

Now consider a set of nodesS that has performed a commission fault, and recall that each node must
commit to a particular execution prefix whenever it sends a message. If any node inS has committed to two
prefixese1 ande2 such that neithere1 ⇂e2 nore2 ⇂e1, that node will be exposed byc, and completeness holds.
Otherwise there is a longest prefix for each node inS. If all these prefixes were correct,π(A,φ+(C, e), C ∪
S) could not be empty; hence, one of them has to be faulty, and thecorresponding node will be exposed by
c. Again, completeness holds.

Accuracy and agreement:A correct node will never commit to two execution prefixese1 ande2 such
that neithere1 ⇂ e2 nor e2 ⇂ e1, and any prefix to which it commits will be correct. So a correct node can
never be exposed by a correct node, and accuracy holds. Also,a correct node will only expose a nodej
after having made sure that every other correct node will eventually obtain evidence of misbehavior against
j. Hence, agreement holds.2

A.7 Lower bound for omission faults

Theorem 7 Any solutionτ of the fault detection problem forFOM in the environmentEf has message
complexityγ(τ) ≥ 3f + 4, provided thatf + 2 < |N |.

Proof: In the following, we choose the family of algorithmsAk to be one where each nodei keeps two local
countersβi andνi, both of which are initially zero. Wheni receives an input(j, x) from its local terminal,
it sends a messageADD(x) to nodej. Whenj receives this message, it outputsx to its local terminal, then
incrementsνj, and finally addsx to βj . If νj ≡ 0 modk andβj ≡ 0 mod2, j responds toi with a ADD(1)
message. Note that withAk, the only possible omission fault is when a node receivesk numbers whose sum
is even, but does not return anADD(1) message.

Now consider an executionek of Ak in which some setX of nodes sendsk numbers to a nodej 6∈ X
such that the sum is even. We observe that in the corresponding executionēk, it is necessary that at least
one correct node learns every single message sent or received by a correct node to decide whether or not an
omission fault exists. Indeed, if at least one message is missing, we can always find a compatible correct
execution in which the node is correct, which allows the nodeto omit messages without any risk. Therefore,
any solutionτ must ensure that at least one correct nodec receives a copy of each message sent or received
by any correct node. Since up tof nodes can be faulty inEf , this requires that at least some setω of
nodes with|ω| ≥ f + 1 receives each of these messages, which requires a message complexity of at least
1 + 2 · (f + 1) = 2f + 3.

However, this is not yet sufficient because, since a correct nodec may not know the exact set of nodes
that are correct with respect toτ(Ak) (only a superset of it), it cannot avoid considering messages sent or
received by faulty nodes. Ifc considers a messagem that a faulty nodej claims to have received from a
nodei, this is not a problem because, ifm is authentic,c can safely conclude thatSEND(i,m, j) must appear
in any plausible execution. However, ifc considers a messagem that a faulty nodej claims to havesentto
a nodei, c cannotconclude thatRECV(i,m) must appear, sincej may never actually have sentm to i. This
can causec to violate both completeness and accuracy. Note that waiting to see whetheri forwardsm after
receiving it is not an option in this case, sincec would have to suspectj in the meantime, and may end up
suspectingj forever if i is faulty and ignoresm, which would violate accuracy.

19

The only wayc can be sure that every forwarded messagem eventually reachesdest(m) is if at least
one correct node has sentm to dest(m). But c does not know that any individual node (exceptc itself) is
correct. Soc can either wait forf + 1 different nodes to assert that they have sentm to dest(m), which
would require at leastf + 1 messages, or it can itself forwardm to dest(m), which is clearly cheaper. Since
every node inω must do this, the overall message complexity is at least1 + 3 · (f + 1) = 3f + 4. 2

A.8 Upper bound for omission faults

Theorem 8 The message complexity of the fault detection problem forFOM in the environmentEf is at
most3f + 4, provided thatf + 2 < |N |.

Proof: We can construct a solutionτ2 as follows. For each algorithmA, τ2 picks an arbitrary set of nodes
ω with |ω| = f + 1. WheneverA sends or receives a messagem on a correct nodei, τ2(A) sendsm to
dest(m), then it attachesi’s complete execution prefix with respect toA up to the transmission or reception
ofm, and then forwardsm to each node inω. Each correct nodec ∈ ω maintains a setMapprox

out of messages
thanc knows to have been sent inµe(ē), a setMapprox

in c knows to have been received by their destination
in µe(ē), and a setEP of prefixesc has received. Whenc receives a forwarded messagem, it recursively
extracts all the prefixes (i.e., the prefixepm attached tom, the prefixes attached to any message sent or
received inepm, etc) and adds them toEP . Also, c recursively extracts all the sent messages from these
prefixes and, for each such messagem′ that is not yet inMapprox

out , c forwardsm′ to dest(m′) and then adds
m′ toMapprox

out . Finally, c recursively extracts all the received messages from these prefixes and adds them
toMapprox

in .
Let j be any node other thanc, let epj be the longest prefix ofj in EP , and letXj be the set of all

messagesm that have been sent toj (i.e.,j ∈Mapprox
out anddest(m) = j) but not yet received inepj . Thenc

suspectsj iff a) EP contains a prefix ofj that is not correct with respect toAj , b)EP contains a prefix that
is not itself a prefix ofepj , or c) there is no infinite extensionep′j of epj such thatep′j is correct with respect
toAj , the inputs inep′j \epj are the messages inXj in any order plus an arbitrary number of terminal inputs,
andj does not send any messages inep′j \epj (recall that, in Section 2.2, we assumed that this is decidable).
As a special case,c remembers the first messagem1 in Xj and, ifm1 appears in the next instance ofepj, c
precedes its next fault notification by one that does not contain j.

It is easy to see that eachτ2(A) is an extension ofA, and that it satisfies the nontriviality requirement.
Therefore, we only need to show thatτ2’s complexity is at most3f + 4, and that eachτ2(A) satisfies the
completeness and accuracy requirements.

Complexity: Correct nodes send each outgoing message to the corresponding destination, and they
forward each incoming and outgoing message to thef + 1 nodes inω, which requires at most2f + 3
messages for each message inµe(ē). In addition, each node inω forwards each message inµe(ē) to its
destination at most once, which requires anotherf + 1 messages and brings the total to3f + 4. The only
way for a faulty node to cause the nodes inω to send additional messages is to add more messages to the
attached prefixes, but these messages are inevitably mappedto µe(ē) as well.

Completeness:First, consider what it means forπ(A,φ±(C, e), C∪S) to be empty whenπ(A,φ+(C, e),
C∪S) is not: it means that any executione′ that is plausible given the messages sent and received by correct
nodes is ruled out by the fact that some messagem should have been sent from or toC in e′ but was not
sent from or toC in e. Clearly, the first case will be detected because of the prefixes included with each
message; if the nodes inS sent some messagem′ that they could only send they had previously received
some messagem from the nodes inC, then the prefix included withm′ would have to includem′, which is
impossible because the faulty nodes cannot forge messages by a correct node. Hence, only the second case
remains: Everye′ ∈ π(A,φ+(C, e), C ∪ S) must contain at least one messagem sent from somes ∈ S to
somec ∈ C such thatm is never received byC in e.

20

At least one correct nodec ∈ ω needs to knowφ+(C,µe(ē)), that is, the setsMout andMin of messages
sent and received by correct nodes, respectively. However,c can safely approximate them byMapprox

out and
Mapprox

in . Clearly, we eventually getMout ⊆ Mapprox
out andMin ⊆ Mapprox

in , since correct nodes forward
incoming and outgoing messages toc. The approximate sets may also contain messages sent between faulty
nodes, but this does not affect completeness, since additional facts can only reduce the set of executions
π(A,φ+(C, e), C ∪ S); hence, if the above condition holds for the entire set, it most certainly holds for any
of its subsets as well. Furthermore, the messagem in the above condition is a message sent to a correct node
j, and, since the messages of a correct node cannot be forged, the faulty nodes cannot causem to be added
toMapprox

in unlessj has actually received it.
Now consider a fault instance(A,C, S, e) ∈ FOM . If |S| = 1, c will suspect the node inS because

of condition c). If |S| > 1, there is no correct execution of the nodes inS that is consistent with the facts
known toc, so at least one of the nodes inS must eventually commit to an incorrect prefix, which will cause
c to suspect it due to condition a) or b), or stop sending messages toc altogether, which causesc to suspect
it due to condition c). The special case does not affect completeness because, if a faulty nodej refuses to
senda message that is required for some input, the correspondingprefix cannot be correct with respect to
Aj , and if j refuses toreceivea message, that message will eventually be the first message in Xj , and the
special case will no longer apply.

Accuracy: Clearly, a correct nodej will never commit to an incorrect prefix, so noc ∈ ω will ever
suspectj due to conditions a) or b). Ifc suspectsj due to condition c),j will eventually receive each of the
messages inXj becausec has forwarded them toj, andj will send at least one more messagem, which it
will also forward toc. m will contain a new prefix, which will causec to re-evaluatej. It is possible, of
course, thatc will continue to suspectj after learning ofm because new messages have been added toXj

in the meantime; however, in this case, the special case willcausec to occasionally emit fault notifications
that do not containj.

Note thatτ2 is a generalization of the transformationτ1 we described in the proof of Theorem 6, that is,
it also solves the fault detection problem forFCO. 2

A.9 Lower bound for omission faults (with agreement)

Theorem 9 Any solutionτ of the fault detection problem with agreement forFOM in the environmentEf

has message complexityγ(τ) ≥ (|N | − 1)2, provided that|N |−1
2 < f < |N | − 2.

Proof: Let τ be any solution of the fault detection problem with agreement for FOM in environmentEf ,
and letA be the following simple algorithm. When a nodei receives a node identifierj ∈ N from its local
terminal, it sends aPING message toj, to whichj must respond with aPONGmessage toi. Given anyk ≥ 1,
we now construct an execution ofτ(A) with at leastk messages such that a status change is necessary after
every single message. Leta andb two different nodes, and let̄p be an execution prefix that is initially empty.

We begin by adding aIN(a, b) event top̄, which causesa to send aPING messagem1 to b. We know
that, if b were to crash-fault now and never send aPONG message, this would be an omission fault; hence,
τ must ensure that at least one correct node learns aboutm1 and exposesb (completeness), and that any
correct node that exposesb first establishes that all the other correct nodes will eventually exposeb as well
(agreement). Since2f + 1 > N , the only way to achieve this is reliable broadcast [9] amongthe nodes in
N \{b}, which requires(|N |−1)(|N |−2) messages. Further, to ensure accuracy, each of the|N |−1 nodes
would have to forwardm1 to b at some point, which requires another|N | − 1 messages and thus brings the
total to (|N | − 1)2. We now extend our prefix̄p by simulating a crash fault onb (i.e., by not delivering
any message that is sent towardsb), and by lettingτ(A) run until it sends no more messages. At this point,
assuming that all the nodes are correct, every node exceptbmust have exposedb, and there must be|N | − 1
copies ofm1 in flight towardsb.

21

Now we start delivering these messages. Sinceb is correct, it will respond to each by conveying the fact
that it has sent aPONG messagem2 to a, which requires|N | − 1 messages. To ensure accuracy, each other
node must removeb from its fault notifications once it learns aboutm2; however, it must only do so when
it is sure that all other nodes know aboutm2 as well. Again, since2f + 1 > |N |, this requires reliable
broadcast and thus another(|N | − 1)(|N | − 2) messages. Thus, we now have an execution prefixp̄ of τ(A)
in which two messages are sent inµe(p̄) but at least2(|N | − 1)2 messages are sent in̄p. Since the situation
at the end of̄p is exactly the same as in the beginning (no messages in flight,no nodes exposed), we can
extendp̄ arbitrarily by repeating the above steps, until we have a prefix with at leastk messages. Hence, the
message complexity is at least(|N | − 1)2. 2

A.10 Upper bound for omission faults (with agreement)

Theorem 10 The message complexity of the fault detection problem with agreement forFOM in the envi-
ronmentEf is at most(|N | − 1)2, provided thatf + 2 < |N |.

Proof: We can construct a solutionτ3 by extending the transformationτ2 from the proof of Theorem 8 as
follows: Rather than forwarding messages in the way specified above, we require them to be sent via reliable
broadcast. This requires(|N | − 1)2 · k messages, which is exactly our budget. Furthermore, since reliable
broadcast implies that each node sends each new message to each of the other nodes, it implies in particular
that correct nodes forward each incoming and outgoing messagem to each node inω, and that the nodes
in ω send each forwardedm to dest(m). Hence, we know that the nodes inω obtain enough information
such that one of them will eventually detect any fault inFOM . However, because of the reliable broadcast,
we also know that any given fact that is known to one correct node is eventually known to all; hence, if one
correct node suspects a nodei forever, all the others will eventually suspecti forever as well. Therefore,
agreement holds.

Note thatτ3 also solves the fault detection problem with agreement forFCO as a special case (although
it requires more messages than the solution to Theorem 6). This proves Theorem 4. 2

22

Symbol Meaning
N Set of nodes
i, j Node identifiers
Ai Algorithm of a nodei
αi Transition function of a nodei
Σi Set of states of a nodei
σi State of a nodei
TI, TO Sets of terminal inputs and outputs
M Set of messages
m Individual message
src(m) Source of a messagem
dest(m) Destination of a messagem
I,O Sets of inputs and outputs
e Execution
e|X Projection of an execution onto a set of nodesX
|e| Number of messages in an execution
e1 ⇂e2 Executione1 is a prefix of executione2
corr(A, e) Set of nodes that are correct ine with respect toA
C Set of correct nodes
c Individual correct node
S Set of suspect nodes
ψ Fault instance
F Fault class
ν Set of fault notifications
τ Transformations that solve the fault detection problem
µm Message map
µe Execution map
µs State map
ē, Ā, . . . Equivalent ofe,A, . . . for the extension
ζ Individual fact
Z Set of facts
φ+(C, e) Fact map (messages sent or received by somec ∈ C)
φ−(C, e) Fact map (messagesnot sent or received by anyc ∈ C)
φ±(C, e) Fact map (φ+(C, e) ∩ φ−(C, e))
π(A,Z,C) Plausibility map
Ef Environment with failure boundf
f Maximum number of faulty nodes
γ(τ) Message complexity of a solutionτ
ω Set of witnesses
P (X) Power set of a setX
k, l General-purpose index variables
X General-purpose set
⊥ Denotes messages thatµm does not map to anything

Table 2: Notation used in this paper

23

