The Fault Detection Problem

Andreas Haeberlén Petr Kuznetsov

Technical report MPI-SWS-2009-005

Abstract

One of the most important challenges in distributed conmgpis ensuring that services are correct
and available despite faults. Recently it has been argusddhlt detection can be factored out from
computation, and that a generic fault detection servicdbeamuseful abstraction for building distributed
systems. However, while fault detection has been extelysstadied for crash faults, little is known
about detecting more general kinds of faults.

This paper explores the power and the inherent costs of gdaalt detection in a distributed system.
We propose a formal framework that allows us to partitiongbieof all faults that can possibly occur in
a distributed computation into sevefallt classesThen we formulate th&ault detection problerfor a
given fault class, and we show that this problem can be sdbwashly two specific fault classes, namely
omission faulteandcommission faultsFinally, we derive tight lower bounds on the cost of solvihg
problem for these two classes in asynchronous messagegpagstems.

Keywords: Fault classes, fault detection problem, message comypléxiter bounds

1 Introduction

Handling faults is a key challenge in building reliable dmited systems. There are two main approaches
to this problem:Fault maskingaims to hide the symptoms of a limited number of faults, s¢ tisars can

be provided with correct service in the presence of fault$44 whereadault detectioraims at identifying

the faulty components, so that they can be isolated andrezp@r, 10]. These approaches are largely
complementary. In this paper, we focus on fault detection.

Fault detection has been extensively studied in the confektenign” crash faults, where it is assumed
that a faulty component simply stops taking steps of itsritlym [5, 6]. However, this assumption does
not always hold in practice; in fact, recent studies havewshihat general faults (also known as Byzantine
faults [15]) can have a considerable impact on practicalesys [17]. Thus, it would be useful to apply
fault detection to a wider class of faults. So far, verydittb known about this topic; there is a paper by
Kihlstrom et al. [12] that discusses Byzantine fault deiestfor consensus and broadcast protocols, and
there are several algorithms for detecting certain typeasoofcrash faults, such as PeerReview [10] and
SUNDR [16]. However, many open questions remain; for exampk still lack a formal characterization
of the types of non-crash faults that can be detected in gerard nothing is known about inherent costs
of detection.

This paper is a first step towards a better understandingrargefault detection. We propose a formal
model that allows us to formulate tifieeult detection problenfor arbitrary faults, including non-crash faults.
We introduce the notion of fault classthat captures a set ¢dwults i.e., deviations of system components

*Max Planck Institute for Software Systems, Campus E1.428@aarbriicken, Germarghae @i - sws. or g
tTU Berlin/Deutsche Telekom Laboratories, TEL 4, Ernst-feetlatz 7, 10587 Berlin, Germamkuznet s@cm org

from their expected behavior. Solving the fault detectisobtem for a fault clasg” means finding a
transformationr that, given any algorithnd, constructs an algorithmd (called anextensionof A) that
works exactly likeA but does some additional work to identify and expose fautiges. Whenever a fault
instance from the clasB appears, A must expose at least one faulty suspect (completenessysit mot
expose any correct nodes infinitely long (accuracy), antipoally, it may ensure that all correct nodes
expose the same faulty suspects (agreement).

Though quite weak, our definition of the fault detection peai still allows us to answer two specific
guestions: Which faults can be detected, and how much extria from does fault detection require from
the extension? To answer the first question, we show thatethef ll fault instances can be divided into
four non-overlapping classes, and that the fault detegirmblem can be solved for exactly two of them,
which we callcommission fault&nd omission faults Intuitively, a commission fault exists when a node
sends messages a correct node would not send, whereas aioarfasilt exists when a node doast send
messages a correct nogeuld send.

To answer the second question, we studyrttessage complexitf the fault detection problem, that is,
the ratio between the number of messages sent by the mogrdfixtension and the number of messages
sent by the original algorithm. We derive tight lower boundshe message complexity for commission and
omission faults, with and without agreement. Our resultsstihat a) the message complexity for omission
faults is higher than that for commission faults, and thabhk)message complexity is (optimally) linear in
the number of nodes in the system, except when agreemeimfuisae for omission faults, in which case it
is quadratic in the number of nodes.

In summary, this paper makes the following four contribagio (1) a formal model of a distributed
system in which various kinds of faults can be selectivelgihared, (2) a statement of the fault detection
problem for arbitrary faults, (3) a complete classificatairall possible faults, including a precise charac-
terization of the set of faults for which the fault detectimmoblem can be solved, and (4) tight lower bounds
on the message complexity of the fault detection problerew®d collectively, our results constitute a first
step toward understanding the power and the inherent cbfalbdetection in a distributed system.

The rest of this paper is organized as follows: We begin hythicing our system model in Section 2
and then formally state the fault detection problem in $&c8. In Section 4, we present our classification
of faults, and we show for which classes the fault detectimblem can be solved. In Section 5, we derive
tight bounds on the message complexity, and we concludesioysting related work in Section 6 and future
work in Section 7.

2 Preliminaries

2.1 System model

Let N be a set ohodes Each node has a termifadnd a network interface. It can communicate with the
other nodes by sending and receiving messages over therketal it can send outputs to, and receive
inputs from, its local terminal. We assume that processimgg are negligible; when a node receives an
input, it can produce a response immediately.

Each message: has a uniqueource sr¢m) € N and a uniqualestination degin) € N. We assume
that messages are authenticated; that is, eachincateinitially create only messageswith src(m) = i,
although it can delegate this capability to other nodes,(bygrevealing its key material). Nodes can also
forward messages to other nodes and include messages immheages they send, and we assume that a
forwarded or included message can still be authenticated.

!Instead of an actual terminal, nodes may have any other li@ahterface that cannot be observed remotely.

A computation unfolds in discre®vents An event is a tupléi, I, O), wherei € N is a node on which
the event occurs] is a set of inputs (terminal inputs or messages) thrateives in the event, ard is a
set of outputs (terminal outputs or messages) thabduces in the event. Aexecutione is a sequence
of events(iy, I1, 01), (i2, I2,02), We writee|g for the subsequence efthat contains the events with
ir € S;fori € N, we abbreviatey;, asel;. When a finite execution is a prefix of another executior,
we writee | ¢’. Finally, we write|e| to denote the number of unique messages that are sent in

A system is modeled as a set of executions. In this paper, sterasthat the network is reliable, that
is, a) a message is only received if it has previously beehatdeast once, and b) a message that is sent is
eventually received at least once. Formally, we assumeftitaévery executiore of the system and every
messagen:

m € I, = [ir, = destm) A3l < k: (i; = src(m) Am € Op)]

(m € Ok Asre(m) = iy) = [31 : 4, = destm) Am €]

An open executiofis an execution for which only the first condition holds. Thas open execution may
contain some messages that are sent, but not received. eftrigidn is needed later in the paper; an actual
execution of the system is never open. Finally, we introdbedollowing notation for brevity:

e RECV(i,m) € eiff m is a message with= des{m) and(i, I, O) € e withm € I.
e SEND(7,m, j) € e iff mis a message with = des{m) and(i, I, O) € e withm € O.
e IN(i,t) € eif tisaterminal input andi, I,0) € ewith ¢t € 1.

e 0UT(i,t) € eif tis aterminal output an¢l, I, O) € ewith ¢t € O.

Table 2 (in the appendix) contains an overview of the natatve use in this paper.

2.2 Algorithms and correctness

Each node is assigned aalgorithm A; = (M;, T1;, TO;, %;, aé, «;), wherelM; is the set of messagesan
send or receivel'l; is a set of terminal inputscan receive7 O; is a set of terminal outputscan produce,
Y, is a set of statesy), € ¥; is the initial state, and;; : ©; x P(M; UTI;) — %; x P(M; UTO;) maps a
set of inputs and the current state to a set of outputs ancethestate. HereP(X') denotes the power set of
X. For convenience, we defir€o, () := (0,0) forall o € ¥;.

We make the following four assumptions about any algorithm a) it only sends messages that can
be properly authenticated, b) it never sends the same neessag, c) it discards incoming duplicates and
any messages that cannot be authenticated, and d) it ndegatds the ability to send messageswith
src(m) = i, e.g., by revealing or leakings key material. Note that assumption b) does not affect igeitye
since A; can simply include a nonce with each message it sends. Weaatgone that it is possible to
decide whether;, starting from some state,, could receive some set of messagem any order (plus an
arbitrary number of terminal inputs) without sending anyssages. This trivially holds {&;| < oo.

We say that a nodeis correctin executiore|; = (i, I1,01), (i, I, O2), . . . with respect to an algorithm
A; iff there is a sequence of stateg, o1, ... in X; such thatrg = ag and, for allk > 1, o;(op—1, 1) =
(ok, Ok). Note that correctness of a notlenplies that the node ibve: if i is in a states;,_; and receives
an input/, theni must produce an outp@®,, such thatw;(ox_1,) = (ok, Ok). If ¢ is not correct ire|;
with respect ta4;, we say that is faulty in e|; with respect to4;.

A distributed algorithmis a tuple(As, ..., Ay)), one algorithm per node, such that; = M; for all
i, 7. When we say that an executieris an execution of a distributed algorithday this implies that each
nodes is considered correct or faulty inwith respect to the algorithm; it has been assigned. We write
corr(A, e) to denote the set of nodes that are correet\vith respect taA.

2.3 Extensions

(A, A, pim, pis, XO) is called areductionof an algorithmA = (M, TI,TO, X, 59, @) to an algorithmA =
(M, TI,TO, Y, 0¢,a) iff p, is a total mapM — P(M), us is a total map: — ¥, and the following
conditions hold:

X1 TI =TI, that is,A accepts the same terminal inputs4s

X2 TO = TOUXO andTO NXO = (), that is,A produces the same terminal outputsfaexceptX O;
X3 us(59) = 09, that is, the initial state ofl maps to the initial state of;

X4 VYmeM ImeM: p,(m) = m, that is, every message dfhas at least one counterpartAn

X5 Voe¥ 35€X: us(o) = o, that is, every state of has at least one counterpartsin

X6 V&1,59€ %, mi,moC M,tiCTI, to C TO : [a(51, miUti) = (52,m0Uto)] = [a(us(F1), pm (mi) U
ti) = (us(02), um(mo) U (to \ XO))], that is, there is a homomorphism betweeandc.

If there exists at least one reduction from an algoritArio an algorithmA, we say thatd is anextensiorof
A. For every reductiofi4, A, u.,, us, XO) we can construct aexecution mapping. that maps executions
of A to (possibly open) executions df as follows:

1. Start withe = (.

2. For each new eveift, I, O), perform the following steps:

(@) Computel := (I NTIL) U (I N M) andO := (O NTO;) U 1, (O N M).

(b) Remove from/ anym € M with des{m) # ¢ or RECV(i, m) € e.

(c) Remove fromO anym € M with senp(i, m, j) € e.

(d) For each nodg € N, computeO; := {m € O |src(m) = j}.

(e) f I #0orO; # 0, appendi, I,0;) toe.

(f) Foreachj # i with O; # 0, append(j, 0, O;) toe.
A simple example of a reduction is the identityt, A, id, id, ()). Note that there is a syntactic correspondence
between an extension and its original algorithm, not justraamntic one. In other words, the extension not
only solves the same problem as the original algorithm (lmdpcing the same terminal outputs as the
original), it also solves it in the same way (by sending threesanessages in the same order). Recall that our

goal is to detect whether or not the nodes in the system dosviog a given algorithm; we aneottrying to
find a better algorithm. Next, we state a few simple lemmasiabxiensions.

Lemma 1 Let A and A be two algorithms for which a reductiof, A,z 115, X O) exists. Then, i€ is an
execution in which a nodgis correct with respect tal, i is correct inyu.(€) with respect toA.

Proof sketch: If i is correct ing|; with respect toA, there exists a matching sequence of staies-, . . .
of A4, in &|;, and we can use homomorphism X6 to convert it into a sequehs&teso, oy, ... of 4; in
1e(€)|;- The proof is by induction over the length @f. For the full proof, see Appendix A.10

Note that, if a nodeé is correct ine with respect tad, then it must be correct in.(e) with respect ta4, but
the reverse is not true. In other words, it is possible for @erido be faulty ine with respect tad but still
be correct inu. () with respect toA.

Lemma 2 Let A and A be two algorithms for which a reductiofd, A, /1,115, X O) exists, lete; be an
execution of4, and letée; be a prefix of;. Thenu,(é2) is a prefix ofu.(é1).

Proof: Follows from the way..(é;) is constructed (events are always appended, never removet)

Lemma 3 Let A and A be two algorithms for which a reductia, A, i, s, X O) exists, and let be an
execution ofd. Then there exists an executienf A such that a)..(¢) = e (modulo duplicate messages sent
by faulty nodes ir), and b) a node is correct ine with respect toA iff it is correct in e with respect toA.

Proof sketch: Given an executior: of A, we can construct a matching executionf A essentially by
feeding the same inputs to the correct nodes, and by deliyenessages in the same order. This works
because of homomorphism X6. The only two complications laaé &) we must ensure that messages are
eventually delivered i even if they have no direct equivalent (ig,) in e, and b) we must choose the
behavior of the faulty nodes appropriately. For the fullgfresee Appendix A.20

2.4 Facts and evidence

To detect faults, and to identify faulty nodes, the corremias must collect information about the current
execution. Clearly, no correct node can expect to know thieeeaexecution at any point, since it cannot
observe events on other nodes. However, each node carylobskrve its inputs and outputs, and each
input or output rules out some possible executions ¢chanotbe the current execution. For example, if a
node: receives a message, this rules out all executions in whieh was never sent. Iif manages to rule
out all executions in which some sg&tof nodes is correct, it has established that at least one nade
must be faulty. Thus, we can use sets of plausible executmnspresent a node’s knowledge about the
current execution.

Formally, we define #act { to be a set of executions, and we say that a nddewsa fact(at the end
of an execution prefix iff ¢ contains all infinite executions wheree|; is a prefix ofe’|; (in other words,

e’ is consistent with all the inputs and outputlsas seen ir). If a node knows two facts; and(,, it can
combine them into a new fact := (; N (. If the system is running an extensiaghof an algorithmA, we
can map any faaf about the current executianof A to a fact¢ := {yu.(z) | € ¢} abouty.(é).

Different nodes may know different facts. Hence, the nodag only be able to detect a fault if they
exchange information. However, faulty nodes can lie, sargeconode can safely accept a fact from another
node only if it receivegvidenceof that fact. Formally, we say that a messages evidence of a faqf iff
for any executiore of A in which any node receives, ;(¢) € ¢. Intuitively, evidence consists of signed
messages. For more details, please see Section 4.

2.5 Faultinstances and fault classes

Not all faults can be detected, and some extensions cant detee faults than others. To quantify this, we
introduce an abstraction for an individual ‘fault’. fault instancey is a four-tuple(A, C, S, e), whereA is
a distributed algorithm{' and S are sets of nodes, anrds an infinite execution, such that &)and.S do
not overlap, b) every € C'is correct ine with respect tod, and c) at least one nodec S is faulty ine
with respect toA. A fault classF' is a set of fault instances, and the node$ iare calledsuspects

Intuitively, the goal is for the correct nodesdanto identify at least one faulty suspect frash Of course,
an ideal solution would simply identifgll the nodes that are faulty iwith respect ta4; however, this is
not always possible. Consider the scenario in Figure 1. imdtenario, the nodes @ know that at least
one of the nodes 5 must be faulty, but they do not know which ones, or how manwsTlthe size of the
setS effectively represents the precision with which the faalt be localized. The best cased$ = 1; this
indicates that the fault can be traced to exactly one node.vildrst case i$ = N \ C; this indicates that
the nodes irC' know that a fault exists somewhere, but they are unable adifecit.

5

e e e e e e e e e e e e e e e = e et e -

: v 5@ 5 0 s 0
1 1

@ 23! ! 23! = ! 23! !

1 1 | - 1 1 1

\ NS Y :vs\m: :vle\n:

\ \/, \ U, \ U,

[O U <

(a) Actual execution (b) Alternative explanations fak’s observation

Figure 1: Example scenario. Nodésand H are supposed to each send a number betwesrd 10 to D,
who is supposed to add the numbers and send the rediilt 0K receive23, it knows that at least one of
the nodes ir6 = {D, F', H} must be faulty, but it does not know which ones, or how many.

2.6 Environments

Our formulation of the fault detection problem does not ieg@a bound on the number of faulty nodes.
However, if such a bound is known, it is possible to find solusi with a lower message complexity. To
formalize this, we use the notion of amvironmentwhich is a restriction on the fault patterns that may
occur in a system. In this paper, we specifically consideirenmentsy, in which the total number of
faulty nodes is limited tof. If a system in environmenk; is assigned a distributed algorithry the only
executions that can occur are those in which at nfiasddes are faulty with respect th.

3 The fault detection problem

Letrv := {FauLTY(X) | X C N} be a set ofault notifications Then thefault detection problenfor a fault
classF is to find a transformation that maps any distributed algorithrh to an extensioM := 7 (A)
such thaff'O = TO U v and the following conditions hold:

C1 Nontriviality: If € is an infinite execution ofi andi € N is correct ine with respect to4, theni
outputs infinitely many fault notifications i

C2 Completenessilf (A, C, S, e) is a fault instance iF, € is an infinite execution such that (e) = e,
and each node € C is correct ine with respect tad, then there exists a correct nodec N and a
node; € S such that eventually all fault notifications output &ycontain;.

C3 Accuracy: If e is an infinite execution oft andc;,c; € N are any two nodes that are correctzin
with respect ta4, thenc; outputs infinitely many fault notifications that do not indér;.

We also consider thiault detection problem with agreememthich additionally requires:

C4 Agreement: If ¢; € N andc, € N are correct in an executiahwith respect toAd and there exists a
node: € NV such that eventually all fault notifications output dyin € include some nodéc N, then
eventually all fault notifications output by in € include: as well.

Note that condition C2 does not require us to detect nodesatkeafaulty ine with respect to4, but
correct inue(e) with respect toA. Thus, we avoid the infinite recursion that would result froging to
detect faults in the detector itself. Note also that conditC3 is weaker than the definition of eventual
strong accuracy in [6], which requires that correct nodesmally output only faulty nodes. This change
is necessary to make the problem solvable in an asynchramironment.

6

s m————— (A9 (Ce)N)=0= === = == N
/ == 1A' (Ce)LCOS)=0-=~
/ n(Ag (Ce)COS)=0
| .

-—— - - -

—— o ——

= =
—— - = -

Figure 2: Classification of all fault instances. The faulisd¢ion problem cannot be solved for fault instances
in Fyo (Theorem 2) ofF' 4, (Theorem 3), but solutions exist fét,,; and Foo (Theorem 4).

4 \Which faults can be detected?

In the rest of this paper, we assume that the only facts fochvlwvidence can exist are a) message transmis-
sions, and b) message receptions. Specifically, a propetiyeaticated message with (,,,(m) = m and
src(m) = ¢ in an executiorg is evidence of a facfe | sEnD(i, m, des{m)) € e} aboutu.(e), and a properly
authenticated message with src(m’) = i, m € m/, anddes{m) = i in an executiore is evidence of a
fact {e |RecV(i,m) € e} aboutu.(€). Note that in some systems it may be possible to construderce

of additional facts (e.g., when the system has more synghlopaccess to more sophisticated cryptographic
primitives). In such systems, the following results may ayoply.

4.1 Definitions

We define twdact mapsp™ and¢— as follows. Lete be an infinite execution or an execution prefix, and let
C be a set of nodes. Theft (C, ¢) is the intersectiohof all facts¢ for which at least one node ifi can
construct evidence ia(note that there is usually no single node that can constuidence ofll facts), and
#»~(C,e) is the intersection of all facts such that, if the complemegtwere a fact ire (i.e.,e € (), then at
least one node i’ could construct evidence gfin e, but{ ¢ ¢t (C,e). For brevity, we writep™(C, e) to
represent both kinds of facts, thatgs; (C, e) := ¢ (C,e) N ¢~ (C,e).

Intuitively, ¢ represents the sum of all knowledge the node€'ican have ire if they exchange all
of their evidence with each other. Since we have restridtedatdmissible evidence to messages earlier,
¢T(C, e) effectively represents knowledge about all the messagesoseeceived ire by the nodes irC,
while ¢~ (C, e) effectively represents knowledge about all the messagésent or received ir by the
nodes inC'.

We also define thplausibility mapr as follows. LetA be a distributed algorithn¥ a set of facts, and
C a set of nodes. Then(A4, Z,C) represents all infinite executiorse Z in which each node € C'is
correct ine with respect toA. Intuitively, 7(A, Z, C) is the set of executions of that are plausible given
the facts inZ, and given that (at least) the node<irare correct.

A few simple properties of andr are: 1)C; C Cy = ¢(Cq,e) C ¢(Ch,e), that is, adding evidence
from more nodes cannot reduce the overall knowledgg; 2)2 = ¢(C,p2) C ¢(C, p1), thatis, knowledge
can only increase during an execution; @) C Cy = 7(A,Z,C2) C w(A,Z,Cy), that is, assuming
that more nodes are correct can only reduce the number o§iplauexecutions; and 4Y; C 7, =
m(A, Z1,C) C w(A, Zy,C), thatis, learning more facts can only reduce the numberanfgithle executions.

’Recall that facts are combined by forming the intersecti®imce facts are sets of plausible executions, an executiirig
plausible given two factg; and¢. must be a member @fi N (2.

4.2 Fault classes

We define the following fault classes (see also Figure 2):

Fyo = {(4,C,S,e)|m(A,¢"(C,e),N) # 0}

Fay = {(A,C S e)|n(A ¢F(Cre),N) =0 Ar(A ¢ (C,e),CUS) # B}
Fou = {(A,C, S e)|n(A,¢=(Cre),CUS)=DAT(A ¢ (Cre),CUS) # D}
Feco = {(A,C, S e)|n(A ¢t (Cre),CUS) =0}

Fyo is the class ohon-observable faultsFor executions in this class, the nodegircannot even be sure
that the system contains any faulty nodes, since theresexisbrrect execution of the entire system that is
consistent with everything they see. We will show in Sectdddthat the fault detection problem cannot be
solved for faults in this class.

Faps is the class oimbiguous fault instancesVhen a fault instance is in this class, the node€’in
know that a faulty node exists, but they cannot be sure thatdhe of the nodes i¥. We will show in
Section 4.4 that the fault detection problem cannot be sofge fault instances in this class. Note that
the problem here is not that the faults cannot be observed €rp but that the sef is too small. IfS is
sufficiently extended (e.g., & \ C), these fault instances become solvable.

Foar is the class obmission faults For executions in this class, the node€ircould infer that one of
the nodes it is faulty if they knew all the facts, but the positive factera are not sufficient; that is, they
would also have to know that some message masent ornot received. Intuitively, this occurs when the
nodes inS refuse to send some message they are required to send.

Feo is the class otommission faults For executions in this class, the node<rcan infer that one
of the nodes inS is faulty using only positive facts. Intuitively, this oasuwhen the nodes if send some
combination of messages they would never send in any caxecution.

Theorem 1 (Fno, Fam, Fou, Foo) is a partition of the set of all fault instances.

Proof: First, we show that no fault instance can belong to more tin@ctass. Suppose:= (A,C, S,e) €
Fno; that is, there is a plausible correct executidof the entire system. Thep can obviously not be in
Fanr, sincer (A, ¢*(C,e), N) cannot be both empty and non-empty. Since all nodes arectanre/, the
nodes inC'U S in particular are also correct, §0¢ Fojs (Section 4.1, Property 3), and they are still correct
if negative facts are ignored, $0¢ Foo. Now suppose) € F4r. Obviously,) cannot be inFp s, Since
7(A, ¢T(C,e),C U S) cannot be both empty and non-empty. Butannot be inFo either, since using
fewer facts can only increase the number of plausible ei@@u{Section 4.1, Property 1). Finally, observe
thatv) cannot be in botlp; and Fop, sincerr(A, ¢ (C, e), C' U S) cannot be both empty and non-empty.
It remains to be shown that any fault instance belongs taat lene of the four classes. Suppose there is
afaultinstance) ¢ (FxoUFanUFonUFco). Sincey is notin Fiyo, we know thatr (A, ¢*(C,e), N) =
(). But if this is true and) is not in F4,, it follows thatw(A, ¢*(C,e),C U S) = (). Given this and that
is not in Fopr, we can conclude that(A, ¢*(C,e),C U S) = (). But theny would be inFo, which is a
contradiction. O

4.3 Non-observable faults

Theorem 2 The fault detection problem cannot be solved for any faabsk with ' N Fvo # 0.

Proof sketch: The proof works by showing that, for any fault instance= (A, C, S,e) € Fyo, we can
construct two executiong,,,q and e, of A := 7(A) such that a) all the nodes are correcijf,q, b)
the fault occurs ire,,q, and c) the two executions are indistinguishable from thrspeetive of the nodes

in C (that is,e400d/c = €nad|c). Hence, the nodes 6" would have to both expose some nodeSirto
achieve completeness if,s) andnot expose any node i (to achieve accuracy if,,.q) based on the
same information, which is impossible. For the full pro&eA\ppendix A.3. O

4.4 Ambiguous faults

Theorem 3 The fault detection problem cannot be solved for any faasF with ' N F 4, # 0.

Proof sketch: The proof is largely analogous to that of Theorem 2, excegt We now construct two
executionsecs andegg of A := 7(A) such that a) irec s the faulty node is a member &f, b) in egg all
the nodes inS are correct, and c) the two executions are indistinguigh&ioim C'. For the full proof, see
Appendix A.4. O

4.5 Omission and commission faults

Corollary 1 If the fault detection problem can be solved for a fault classhent” C Fou U Feoo.

Theorem 4 There is a solution to the fault detection problem with agreat for the fault clas$p U Foo.

For a transformation that solves the fault detection protier this class, please refer to the proof of Theo-
rem 8, which appears in Appendix A.8.

5 Message complexity

In this section, we investigate how expensive it is to sohe fault detection problem, that is, how much
additional work is required to detect faults. The metric e s the number of messages that must be sent
by correct nodes. (Obviously, the faulty nodes can sendrarity many messages). Since the answer clearly
depends on the original algorithm and on the actions of thkyfamodes in a given execution, we focus on
the following two questions: First, what is the maximum n@mbf messages that may hecessaryor
some algorithm, and second, what is the minimum number o$ages that isufficientfor any algorithm?

5.1 Definitions

If 7 is a solution of the fault detection problem, we say thatrtfessage complexity(r) of 7 is the largest
number such that for akt, there exists an algorithr, an executiore of A, and an executioa of 7(A)
such that

| {m | seEND(7,m, j) € e Ai € corr(T(A),e)} |
le]

(he(€) =€) A(le] = k) A > (7)

In other words, the message complexity is the maximum nurmoberessages that must be sent by correct
nodes in any per message sent in the corresponding= 1..(¢). The message complexity of the fault
detection problem as a whole is the minimum message conplexér all solutions.

5.2 Commission faults

In this section, we present a collection of tight lower boairidr solving various instances of the fault
detection problem. First we show that message complexityeofault detection problem in the environment
E; for both commission and omission faults is optimally linga)f .

Theorem 5 Any solutionr of the fault detection problem fafFo in the environmentt; has message
complexityy(7) > f + 2, provided thatf + 2 < |N]|.

Proof sketch: We show that no solutiom can achieve completeness unless, for each pair of messages
(mq, m9) received by correct nodes, there is at least one correct thaddearns about both; andms.

Since up tof nodes can be faulty iy, the cheapest way to achieve this is to forward each meseage t
the same set of + 1 nodes. Since each message must also be sent to its destirtaototal message
complexity is at leasf + 2. For the full proof, see Appendix A.50

Theorem 6 The message complexity of the fault detection problem witeanent forF o in the environ-
mentE, is at mostf + 2, provided thatf + 2 < |N|.

Proof sketch: We construct a solution; that requires the correct nodes to forward a copy of eachmimmg
message to a setof f + 1 different nodes. Since at mogtiodes can be faulty, there is at least one correct
nodec € w that has enough information to detect each commission féthien this node detects a fault on
another node, it constructs a proof of misbehavior and uses reliable dwast to forward the proof to all
the other nodes. Since the proof contains at most two messaige since each node can be exposed at most
once, the broadcast step does not affect the message camdtex the full proof, see Appendix A.6.0

Corollary 2 The message complexity of the fault detection problem (wittithout agreement) foF-o in
environmentE is f + 2, provided thatf + 2 < |N]|.

5.3 Omission faults

Theorem 7 Any solutionr of the fault detection problem faFp,, in the environment; has message
complexityy(r) > 3f + 4, provided thatf + 2 < |N|.

Proof sketch: To achieve completeness and accuracy, every solatiost ensure that at least one correct
node learns all messages that were sent or received by tlexicapdes. However, when a nodéarns
about a message that was supposedly sent by some other ngdecannot know whethey is correct, sa:
cannot be sure that will actually reachdestm) unless it forwardsn to des{m) itself. Since up tgf nodes
can be faulty inEy, at least some set with |w| > f + 1 must learn each message, and, for eachw,
each message must be forwarded three times: once from theegou, once frome to the destination, and
once from the destination © Thus, the message complexity is atlebst 3 - (f + 1) = 3f + 4. For the
full proof, see Appendix A.7.0

Theorem 8 The message complexity of the fault detection problentifoy; in the environment; is at
most3 f + 4, provided thatf + 2 < |N|.

Proof sketch: We construct a solutiom, that forwards each message up to three times from or to a set of
f + 1 nodes. Thus, the message complexity-is 3/ + 4. For the full proof, see Appendix A.80

Interestingly, if we additionally require agreement, thiea optimal message complexity of the fault detec-
tion problem with respect to omission faults is quadratig¥n, under the condition that at least half of the
nodes may fail. Intuitively, if a majority ofV is known to be correct, it should be possible to delegatd faul
detection to a seb with |w| = 2f + 1, and to have the remaining nodes follow the majority.of This
would reduce the message complexity to approximdt¥ly- (2f + 1).

Theorem 9 Any solutionr of the fault detection problem with agreement 1g5,, in the environment’,
has message complexityr) > (|N| — 1), provided that% < f<|N|-2.

10

Fault class Fault detection problem Fault d etection problem
with agreement
Feo f+2 f+2
(Corollary 2) (Corollary 2)
o 3f +4 (N -1)?
(Theorems 7 and 8) (Theorems 9 and 10)

Table 1: Message complexity in environments with ug taulty nodes.

Proof sketch: In contrast to commission faults, there is no self-con@ipmof of an omission fault; when

a node is suspected of having omitted a messagéhe suspicion can always turn out to be groundless
whenm eventually arrives. We show that, under worst-case candifisuch a ‘false positive’ can occur
after every single message. Moreover, since agreemergugee, a correct node must not suspect (or stop
suspecting) another node unless every other correct nadually does so as well. Therefore, after each
message, the correct nodes may have to ensure that theirvogenee is known to all the other correct
nodes, which in the absence of a correct majority requirksbte broadcast and thus at ledgh| — 1)?
messages. For the full proof, see Appendix AQ.

Theorem 10 The message complexity of the fault detection problem witheanent forF,, in the envi-
ronmentE; is at most(| V| — 1)2, provided thatf + 2 < |N|.

Proof sketch: We construct a solutiors that sends each message via reliable broadcast, and welstow t
the message complexity of is (|N| — 1)2. For the full proof, see Appendix A.100]

5.4 Summary

Table 1 summarizes the results in this section. Our two nmesnlts are that a) detecting omission faults
has a substantially higher message complexity than detecommission faults, and that b) the message
complexity is generally linear in the failure bourfd except when the fault class includes omission faults
and agreement is required, in which case the message compigxjtiadratic in the system siz&|.

6 Related work

There is an impressive amount of work on fault detection éndibntext ofailure detectorgstarting from the
original paper by Chandra and Toueg [6]). However, litemion failure detectors conventionally assumes
crash-fault models, and usually studies theoretical bewmdhe information about failures that is necessary
to solve various distributed computing problems [5], withbcusing on the costs of implementing failure
detectors.

Faults beyond simple crashes have been extensively stumdiled context of arbitrary (Byzantine) fault
tolerance (starting from the original paper by Lamport efHb]). Byzantine fault-tolerant systems aim
to keep faults from becoming “visible” to the system userse@xample is Castro and Liskov’s Practical
Byzantine fault-tolerance (PBFT) [4] that extends Lampatate-machine replication protocol [14] to the
Byzantine failure model. However, BFT systems do not dedadtexpose faulty nodes.

In the context ofsynchronouByzantine agreement algorithms, Bar-Noy et al [2] use thes$e'fault
detections” and “fault masking” in a more restrictive manttan this paper does. In [2], a processor in an
agreement protocol is said to be “detected” if all correcicpssors agree that the processor is faulty. All
subsequent actions of this processor are then ignored aadrttasked”.

11

Also with respect to Byzantine agreement algorithms, Baaj@)j describes a protocol in which all
messages are broadcast, and in which all nodes track the dftatvery other node in order to identify
messages that could not have been sent by a correct node.

Intrusion detection systems (IDS) can detect a limitedsctdgprotocol violations, for example by look-
ing for anomalies [7] or by checking the behavior of the systgainst a formal specification [13].

A technigue that statistically monitors quorum systemsraigks an alarm if the failure assumptions are
about to be violated was introduced in [1]. However, thishitegue cannot identify which nodes are faulty.

To the best of our knowledge, Kihlstrom et al. [12] were thstfio explicitly focus on Byzantine fault
detection. The paper also gives informal definitions of themission and omission faults. However, the
definitions in [12] are specific to consensus and broadcasbqols.

Our notions of facts and evidence in a distributed systemiregred by the epistemic formalism of
Halpern and Moses [11].

The results in this paper have important consequencesdeareh oraccountabilityin distributed com-
puting. Systems like PeerReview [10] provide accountgblly ensuring that faults can eventually be
detected and irrefutably linked to a faulty node. Sincetfdatection is an integral part of accountability,
this paper establishes an upper bound on the set of faultghfich accountability can be achieved, as well
as a lower bound on the worst-case message complexity. Natgtactical accountability systems have
other functions, such as providing more detailed faultfiatiions, which we do not model here.

7 Conclusion and future work

In reasoning about computing systems, it is very importaritnd the right language. Somewhat danger-
ously, intuitive claims sometimes become “folklore” befdhey are actually stated precisely and proved.
For example, exact bounds on the information about crasirdai needed for solving agreement, though
informally anticipated earlier [8, 14], were captured [sety only with the introduction of failure detec-
tors [6], and especially the notion of the weakest failured@r [5].

Similarly, this paper has developed a language for reagoaliout fault detection with general fault
models (beyond simple crash faults). We have proposed aefwank in which generic faults can be pre-
cisely defined and classified. Unlike crash faults, geneudt$ cannot be defined without reference to an
algorithm, which is why we have introduced the expectedesygiehavior into the definition. To determine
the inherent costs of generic fault detection, we have mepa weak definition of the fault detection prob-
lem, and we have derived exact bounds on the cost of solvingagynchronous message-passing systems
where nodes are able to digitally sign their messages.

The framework we have presented can also be used to studyd&tektion in other system models.
If the model is weakened or strengthened (e.g., by varyiegagsumptions about the network, the degree
of synchrony, or the available cryptographic primitivethle kinds of evidence available to correct nodes
can change, as can the set of executions that are plausigla gobme specific evidence. This change,
in turn, affects the ability of correct nodes to detect amdai® faulty nodes. For instance, if bounds on
communication and processing times are known, it is passiblestablish in finite time that an omission
fault has occurred, and the culprits can safely be suspdcoteder. The model could also be changed by
introducing bounds on the message size and/or the set e§&tafhese changes would likely increase the
message complexity and reduce the size of the fault class@ghfch detection is possible.

Our framework can be used to study different variants of thdtfdetection problem. The (weak)
formulation of the problem chosen in this paper was pringanstrumental for establishing impossibilities
and complexity lower bounds that capture inherent costsetédation in the asynchronous systems. In
other scenarios, however, different formulations may makee sense. For example, accuracy could be
strengthened such that eventually no correct node is sieshéy any correct node; this would require

12

stronger synchrony assumptions [6, 8]. On the other hanudpt=ieness could be relaxed in such a way
that faults must only be detected with high probability. liftaary evidence suggests that such a definition
would substantially reduce the message complexity [10].

In conclusion, we believe that this work is a step toward #ebeinderstanding of the costs and limita-

tions of fault detection in distributed systems. We alsaevel that this work could be used as a basis for
extending the spectrum of fault classes with new intermeditasses, ranging between the “benign” crash
faults (which have proven to be too restrictive for moderfiveare) and the generic but rather pessimistic
Byzantine faults.

References

[1]

[2]

[3]

[4]

[5]

Lorenzo Alvisi, Dahlia Malkhi, Evelyn Tumlin Pierce, dnMichael K. Reiter. Fault detection for
Byzantine quorum systemEzEE Transactions on Parallel and Distributed Syste9):996-1007,
2001.

Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. RayndoStrong. Shifting gears: Chang-
ing algorithms on the fly to expedite Byzantine agreementPrceedings of the 6th Annual ACM
Symposium on Principles of Distributed Computing (PODQ, ®ages 42-51, August 1987.

Gabriel Bracha. Asynchronous Byzantine agreementopmds. Information and Computatign
75(2):130-143, November 1987.

Miguel Castro and Barbara Liskov. Practical Byzantiaalf tolerance and proactive recoveACM
Transactions on Computer Systerf8(4):398—461, November 2002.

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Tohegveakest failure detector for solving
consensusJournal of the ACM43(4):685-722, July 1996.

[6] Tushar Deepak Chandra and Sam Toueg. Unreliable failetectors for reliable distributed systems.

[7]

[8]

Journal of the ACM43(2):225-267, March 1996.

Dorothy E. Denning. An intrusion-detection modelEEE Transactions on Software Engineering
13(2):222-232, 1987.

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On th#mimal synchronism needed for dis-
tributed consensuslournal of the ACM34(1):77-97, January 1987.

[9] Vassos Hadzilacos and Sam Toueg. A modular approachulitéderant broadcasts and related prob-

[10]

[11]

[12]

lems. Technical Report TR94-1425, Cornell University, @omer Science Department, May 1994.

Andreas Haeberlen, Petr Kuznetsov, and Peter DruscRekrReview: Practical accountability for
distributed systems. IRroceedings of the 21st ACM Symposium on Operating Systanspies
(SOSP '07)pages 175-188, October 2007.

Joseph Y. Halpern and Yoram Moses. Knowledge and comknowledge in a distributed environ-
ment. Journal of the ACM37(3):549-587, July 1990.

Kim Potter Kihlstrom, Louise E. Moser, and P. Michael IN&-Smith. Byzantine fault detectors for
solving consensuslhe Computer Journa#6(1):16-35, January 2003.

13

[13] Calvin Ko, George Fink, and Karl Levitt. Automated detten of vulnerabilities in privileged pro-
grams using execution monitoring. Rroceedings of the 10th Annual Computer Security Appbcati
ConferenceDecember 1994,

[14] Leslie Lamport. The part-time parliamerdCM Transactions on Computer Systerh§(2):133-169,
May 1998.

[15] Leslie Lamport, Robert Shostak, and Marshall Pease Byrzantine generals problelACM Trans-
actions on Programming Languages and Systet(®):382—401, July 1982.

[16] Jinyuan Li, Maxwell Krohn, David Mazieres, and Deni8asha. Secure untrusted data repository
(SUNDR). InProceedings of the 6th USENIX Symposium on Operating SyB&sign and Imple-
mentation (OSDI '04)pages 121-136, December 2004.

[17] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, arairSMadden. Tolerating Byzantine faults in
transaction processing systems using commit barrier stingd In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSRpages 57—-72, October 2007.

A Proofs

A.1 Reduction preserves correctness

Lemma 1 Let A and A be two algorithms for which a reductidd, A, j,,, s, XO) exists. Then, i€ is an
execution in which a nodgis correct with respect tal, i is correct inyu. (€) with respect toA.

Proof: If i is correct ine with respect toA, there exists a sequence of staigsas, ... such that for all
k>1,a;(6x_1,1x) = (61, Or) (Wherel;, andOy, are the inputs and outputs in theh event ofe|;). First,
we observe that events in (é)|; can only be generated by rule 2e, and never by rule 2f. To sgeasbume
the contrary, that is, some evefit (), O;) is added tou.(€) in response to another evefyt I;,0;) in e
because there exists a messagec O; such thatim; € ., (m;) with src(m) = i. But, since we have
assumed tha#l never requires any node to delegate its capability to sigssages, and thais correct with
respect tad, j could only have sent; if it previously receivedn;. directly or indirectly fromi. But that
means that, at the time the event is addaho(i, m;, des{m;)) € p.(€), som; would have been removed
in rule 2c, which is a contradiction.

Now we are ready to prove the claim by induction. E&t) be the index of the event i, that caused
the event with indext to be added te|; (obviously, £(k + 1) > &(k)). Also, let£(0) := 0, and let
or = p1s(Fe@ry)- Ourinduction hypothesis is that &)s correct in the prefix ot|; that consists of the first
k eventsandthatoy, . .., oy is the corresponding sequence of states. The proof is byfiwtuoverk. For
k = 0, the claim holds because of requirement X3.

Assume the hypothesis holds upko- 1. We begin by showing that,(G¢(x)—1) = ps(Tep—1))- If
¢(k) = &(k — 1) + 1, this is trivially true. Otherwise, we know that rule 2e wasver triggered for the
events in between, so, in evertd: — 1) + 1...£(k) — 1, ¢ did not receive any terminal inputs, did not
produce any terminal outputs 0, and any messageéseceived were either duplicates or mapped tby
1m, Neither of which would cause a state transitioMinThus, because of homomorphism X6 and because
a(0,0) = (0,0), we know thays(Gek—1)15) = ts(Tep—1)45+1)) forall0 < j < £(k) — &(k —1).

Now consider the transition from evefitk) — 1 to event{(k) in e. Let I := Ic4y_y N M be the
messages received byn this event, and left := I¢(ky—1 N TT be the terminal inputs it received. Also, let
O™ := Og(y—1 N M be the messages it sent, and@¥t:= O ;) N 7O andO* := Og(;y—1 N XO be
the terminal outputs it produced. From rule 2a, we know fhat 1, (I™) U I (minus any duplicates and

14

messages witdest{m) # i, to which A would not have responded anyway) abg= p,,,(O™)UO!. Since
i is correct ine|; with respect tad, we also know thati(G¢ ()1, I U I') = (5¢(), O™ U O' U O%), and
therefore, according to homomorphism X@.s(T¢()—1), tm (I™) U I') = (ps(Te(i))s pan (O™) U OF).
Putting everything together, we geto_1, I) = (0%, Ox), which is the hypothesis for. O

A.2 Existence of executions of the extension that map to a sgic execution

Lemma 3 Let A and A be two algorithms for which a reductiqd, A, pi,,, 115, X O) exists, and let be an
execution ofd. Then there exists an executionf A such that a)..(¢) = e (modulo duplicate messages sent
by faulty nodes ir), and b) a node is correct ine with respect tod iff it is correct in e with respect toA.

Proof: Lete be an arbitrary execution of, and letC' be the set of nodes that are correct with respect to
A. We can iteratively construct an executionf A with p.(€) = e andC = C (whereC is the set of nodes
that are correct i with respect tad) as follows. During the construction, we will maintain theléwing
three invariants: After mapping each prefix= ey, ..., e Of e to a prefixz of ¢, 1) u.(z) = x (modulo
duplicates sent by faulty nodes), 2) for each distinct ngssathat is in flight inz, Recv(destm), m) ¢ z
and there exists a messagewith 1, () = m anddestm) = des{m) that is in flight inz, and 3) ifi is
correct,o is the state is in afterx, anda is the state is in afterz, thenu (o) = o.

Initially, = = z =), so all three invariants trivially hold. Then we perform tiodlowing two steps
for eache, = (iy, Iy, Oy) of e. First, we construct a sef, by taking the terminal inputs fronf, and,
for each message: € I, a message: with 4, (m) = m anddes{m) = des{m) that has not yet been
delivered ine (which must exist according to invariant 2).ilf € C, we then construad;, by evaluating
&, ; otherwise we simply use the terminal outputgJp plus, for each message in Oy, some message
with s, (m) = m. Then we addiy, I, Oy) to &.

After the first step, all three invariants still hold. To selwthe first invariant holds, we consider what
rules inpu. could have been invoked by the addition of the new event. Rutannot have been invoked
because nodes did not share their key material iule 2c affects only duplicate messages sen, iand
rule 2b cannot have been invoked because, according taanv&, the messages we just delivered were
sent toi;, and have not been delivered before. Heroectly oneevent(i,, I,, O,) has been added to
(through rule 2e). Since events generated by rule 2e alwesis @n the same node as the original event,
we know thati, = i;. Furthermore, by construction, the set of terminal infos in I, and Oy, is the
same as i, andO;, (except for possible fault notifications @), and we knowu,,, (I N M) = (I, N M)
because of the way we chose the messagés. itt remains to be shown that,, (O, N M) = (O N M) if
i, 1S correct; this is the case because of the homomorphism Xécskeaa anda. Hence, according to the
definition of rule 2a/, = I}, andO, = Oy. The second invariant holds because the only new messages in
flight in 2 are the ones sent i),. We have already seen that for eaghe Oy, O;, contains a message that
maps tom, which is now in flight inz. Finally, the third invariant holds because of homomonphi$6.

If we used only the first step, messagesidhat do not map to a messagebivould never get delivered.
Hence the second step, which works as follows: We begin raning the seX of messages: that are
currently in flight inp and haveu,, (m) = L. For each nodg, we then add an evei, I;, O;) to &, where
I; contains the messages M whose destination ig, andO; is calculated by invokingy,;. Because of
homomorphism X6, and becausg(c, () = (o,0), we know that for any message € O;, u,(m) = L;
further, if 5,4 is the old state of anda,,., is its new state, we know that; (5,14) = pts(Tnew), that is,j’s
state with respect to the original algorithindoes not change.

After the second step, all three invariants still hold. Thstfinvariant holds because no event has been
added by, (recall that there were no terminal inputs, no terminal atggrom7'O, and that for allm we
added,u,,(m) = L; hence, after rule 2a, the setsand O would be empty). The second invariant holds

15

because the set of in-flight messages that magysanessages has not changed. The third invariant holds
because it held after the first step and, as explained earli€t,;q) = 1ts(Tnew)-

We still need to show thatis an execution, and that = C'. ¢ is an execution because a) any messages
that map toA’s messages are delivered at the same point asamd b) any other messages are delivered
after at mos{N| + 1 events. Hence, no messages remain undelivered, and byuwitst, no messages
can be delivered unless they have previously been sent. g #matC' C C because we have derived
all events on correct nodes using their transition funetiofo see why N \ C') C (N \ C), consider that
eachj € (N \ C) is faulty because it has performed an incorrect state tiansiwhich will mapped to an
incorrect state transition in = O

A.3 The fault detection problem cannot be solved for non-obervable faults
Theorem 2 The fault detection problem cannot be solved for any faab<k with ' N Fo # 0.

Proof: The proof works by showing that, for any fault instance= (A, C, S, e) € Fno, We can construct
two executionsz,,.q andeép,q of A := 7(A) such that a) all the nodes are correctejp,q, b) the fault
occurs iney,q, and c) the two executions are indistinguishable from threpeetive of the nodes ifi' (that
iS, €g00d|c = €pad|c). Hence, the nodes i6’ would have to both expose some nodeSir(to achieve
completeness im,q) and not expose any node ¥ (to achieve accuracy if,,.q) based on the same
information, which is impossible.

Suppose there is a solutionto the fault detection problem for some cldswith ¢ := (A, C, S,e) €
Fno N F, and letey,q = e. Sincey € Fyo, there exists an executian,.; € m(A, »*(C,e), N). By
Lemma 3, there exists an executionthat is mapped teg004 DY 11 @and in which all nodes are correct
with respect ta4; we can simply choose that execution todyg,.

Next, we constructy, from é,,.4. We assume that all the nodes/in\ C' collude; hence, we can freely
choose the behavior of these nodes without considedingirst, we construct an executi@n as follows:
We remove frome,,.q all events(iy, I, O) wherei;, € N\ C, and then we add recv(m, j) event for
everym sent by a node i@’ to a nodej € N \ C, as well as &enD(i, m, j) event for everyn received by
anodei € C' fromanodej € N \ C. When adding events for messagesvith j,,,(m) # L, we add them
in the same order as 4. This already ensures that|c = €go0d|c-

However,ée; is not a valid execution yet becauseein a nodek € N \ C can send a message that
was originally sent by a node € C to another nodg € N \ C, j # k. Since we assumed that faulty
nodes cannot forge the signature of a correct nddmnnot do this without having received from j first.
Therefore, after evergecv(m, j) event withj € N \ C, we add aseND(j, Fwp(m), k) / RECV(k, FwD(m))
pair for every nodé € N\ C, k # j, whererwp is a message that is not i, thus arriving at an execution
é2. Note that, since the system is asynchronous, we can chio@sedssage delays # arbitrarily.

éo is a valid execution, but we do not yet hang(éa) = epq. However, the only missing events are
terminal in/outputs on the nodes M \ C, as well assenp andrecv events for messages sent among the
nodes inN \ C. The former can easily be added by insertingand out events. To add the latter, we
proceed as follows: For each messagsent from a nodg to a nodek, j,k € N \ C, we pick anym € M
with 1, (m) = m and insersenp(j, m, k) andrecv(k, m) events. Of course, any inserted events must be
added in the same sequence in which they occurreg,in Note that, since the nodes i\ C have shared
their key material, there is no need to broadcast the messageng them. The result is the executiggy,
and we havei.(éped) = €pad-

Now letc € C be a correct node. Because of nontrivialitynust output infinitely many fault noti-
fications iney,,q andey,q. Because of completeness, the notifications,jy must eventually all contain
some non-empty subset 6f Let s be a node in that subset. Because of accuracy, infinitely roatiye

16

notifications ine,,,q must not contain. But becausé,,.q|c = €vaud|c andA is deterministicc must output
the samefault notifications ire,,,q andey,q. This is a contradiction. O

A.4 The fault detection problem cannot be solved for ambiguos fault instances
Theorem 3 The fault detection problem cannot be solved for any faask with F' N Fap; # 0.

Proof:. The proof is largely analogous to that of Theorem 2, excegut\ire now construct two executions
ecs andegg of A := 7(A) such that a) irec s the faulty node is a member &f, b) in é¢s all the nodes in
S are correct, and c) the two executions are indistinguighitbin C'.

Suppose there is a solutiento the fault detection problem for some cldswith ¢ := (A, C, S,e) €
FauyNF,andletecs := e. Sincey € Fayr, we haver (A, ¢F(C,ecs), N) = 0, butm(A, ¢*(C, ecs), CU
S) # (. Letegs be an execution ir(A4, ¢*(C, ecg),C U S); note that ine¢g, all the nodes irC U S are
correct with respect to A. Letys be an execution with.(e¢s) = egs in which all the nodes i’ U S are
correct with respect tal. Such an execution must exist according to Lemma 3.

Our goal is to construct an executieps such thaf.(écs) = ecs andecs|c = égg|c. If we assume
that all the nodes inV \ C are faulty and collude irzcg, this can be done as follows. We start with
€es = €gg|c and, for every message that was sent by a nodec N \ C to a nodec € C, we add a
transmission evertenD(s, m, ¢) to ecg. Similarly, for every message that was sent froni’ to S, we add
a receive event tecg. Finally, for each message that is sent between two nodeg s, € N \ C'in ecg,
s1 andsy can send some messagewith u,,(m) = min écs. This ensures that.(écs) = ecs.

Now consider any: € C. Because of nontrivialitys must output infinitely many fault notifications
in écs andegg. Because of completeness, the notificationsdpn must eventually all contain someec
S, and because of accuracy, infinitely many of the notificationezs must not contairs. But because
eeslc = egslc and A is deterministicc must output thesamefault notifications inecs andegs. This is a
contradiction. O

A.5 Lower bound for commission faults

Theorem 5 Any solutionr of the fault detection problem fafFo in the environmentt; has message
complexityy(7) > f + 2, provided thatf + 2 < |N]|.

Proof: The claim follows if, for any giverk, we can construct an executiep of some algorithmA such
that any solutiorr(A) must send at leagif + 2) - |ex| messages in any executiepwith . (ex) = ek.

We begin by choosing the algorithrh as follows. Each nodelocally maintains a seB; of bitstrings,
which is initially empty. When receives an inputj, «) from its local terminal, it checks whetherc B;;
if so, it ignores the input, otherwise it addsto B; and sends a messageo nodej. Note there is only
one type of commission fault, namely sending the same ipigsto two different correct nodes. For any
k > 1, we can construct a#, such that a single nodereceivesk inputs whose bitstrings are all different
and whose node identifiers are from a specific’etvhich we define below. Note thasendsk messages
in eg, SO|€k| = k.

First, we observe that(A) cannot achieve completeness unless it ensures that, fopaa®f messages
(m1, m9) that is received by correct nodes, there is at least oneataroglec that learns about both; and
mes. If this were not the case for some pair of messages, themitl dz that this pair was a duplicate, and
7 would not be able to detect this. However, sinceannot be sure that any particular node is correct with
respect tar(A), the only way to achieve this goal is to ensure that each paressages is made known to
at leastf + 1 different nodes. Since at mogtnodes can be faulty ifv;, this ensures that at least one of
them is correct.

17

Next, we show that cannot send messages in batches. According to homomorptsm(A) must
send at least one message wheneVeends one, and since the terminal inputs arrive one by oag iA
also sends messages one by one;(sh has no opportunity to combine the original transmissions.hakie
seen earlier that correct nodes must forward messagest&incether nodes, and could potentially batch
those; however, since the original transmissions are wlibyeterminal inputs, no node can be sure at any
point that there will be a next message. Thus, if any trarsionisvere delayed, it could be that this message
was the last one, and it might never be sent.

The cheapest way to ensure that each pair of messages isysgen b different nodes is to forward
each message to tkameset of nodess with |w| = f + 1. This can be done witli messages if the original
recipient belongs ta; however, whatever the set is, we can adjust theXsef recipients ine, such that it
does not contain any nodes fram(this is possible only if there are other nodes besideg thel nodes in
w and the sendet hence the restriction tp+2 < |N|). Therefore;(A) will need at least one message for
each of the; original transmissions ip;, plus f + 1 messages to forward each of themutovhich amounts
to (f +2) - k messages in total. O

A.6 Upper bound for commission faults

Theorem 6 The message complexity of the fault detection problem \giteanent forF o in the environ-
mentE is at mostf + 2, provided thatf + 2 < |N|.

Proof: The claim follows if we can construct at least one transfdiomathat solves the problem with
agreement foFco in £y and, in any executioa with .. (€) = e, at most(f + 2) - |e| messages are sent by
correct nodes if.

We choose the transformation that works as follows: Every correct nodeéakes each message it
receives, attaches to it the complete sequence of steps taken so far, and then forwards to a fixed
set of nodesv with |w| = f + 1. Note that, since messages are authenticateffectively commits to a
particular execution. Whenever the nodesireceive a forwarded message, they recursively extradteall t
sequences of steps it contains (note that each messagednense of steps contains another sequence of
steps), and they combine them with the sequences they hergoeeviously. Finally, for every nodec N,
they check the following two conditions: whether 1) thera isequence of steps frojrthat is not correct
with respect tod;, and whether 2) they find two sequences of steps fjamither of which is a prefix of
the other. If either of these is the case, they take the (at two$ messages that contain these sequences of
steps and use reliable broadcast to forward them to all thex oibdes in the system. When any correct node
receives such messages via reliable broadcast, it refpesgbove checks and, if successful, it expgses
the tests falil, it does not forward the message further.

Complexity: Clearly, , has message complexifiy+ 2; there is no way for the faulty nodes to cause
a correct node to send additional messages without alsogadiw messages fa.(¢), and the reliable
broadcast step requires at most a fixed number of messages esich of the nodes i¥ can be exposed at
most once. Hence, we only need to show thatolves the fault detection problem with agreementHep
in environment.

CompletenessiWe begin by showing that, to detect faultsfipo, it is sufficient to know the messages
received by correct nodes. Recall tiidt, C, S, e) € Fro iff 7(A, ¢ (C,e),C U S) = 0, but according to
completeness, it must be exposed only if all the nodes are correct, s (C, ¢) corresponds to all the
message sent or received by correct nodes. Now/ié€, ¢) be only the facts that correspond to messages
receivedby correct nodes. If there were some executibr (A, ¢'(C,e), C U S), we can construct an
executione” € w(A,¢"(C,e),C U S) by taking the prefix: of ¢’ until the last message is sent frafito
C, and then delivering any extra messages sent #foto S afterz. The only way for the nodes &' to

18

distinguishe” from ¢’ is if any required messages are sent fr8rto C' after x that are not received by
however, this would require a negative fact.

Now letc be a correct node i (which must exist becauge| > f). Since each correct node forwards
all messages it receives to each node,in eventually learng*(C, e). ¢ may learn other facts as well (e.g.,
messages received by faulty nodes), but, according to then&4 in Section 4.1, knowing more facts can
only shrink the set of plausible executions, and thus capreatentc from detecting a commission fault.

Now consider a set of nodésthat has performed a commission fault, and recall that eade must
commit to a particular execution prefix whenever it sends ssage. If any node if has committed to two
prefixese; ande, such that neithes; | e; nores | e, that node will be exposed leyand completeness holds.
Otherwise there is a longest prefix for each nod#.iff all these prefixes were correet(A, ¢ (C,e), C' U
S) could not be empty; hence, one of them has to be faulty, andatresponding node will be exposed by
c. Again, completeness holds.

Accuracy and agreemenf correct node will never commit to two execution prefixgsande, such
that neithere; | e5 noresy | e1, and any prefix to which it commits will be correct. So a cormeode can
never be exposed by a correct node, and accuracy holds. &lsarrect node will only expose a node
after having made sure that every other correct node withtesagly obtain evidence of misbehavior against
j. Hence, agreement holds.O

A.7 Lower bound for omission faults

Theorem 7 Any solutionT of the fault detection problem faFp,, in the environment; has message
complexityy(r) > 3f + 4, provided thatf + 2 < |N|.

Proof: In the following, we choose the family of algorithras, to be one where each nodkeeps two local
counterss; andy;, both of which are initially zero. Whenreceives an inputj, =) from its local terminal,
it sends a messageD (=) to nodej. Whenj receives this message, it outputso its local terminal, then
incrementsy;, and finally adds: to 3;. If v; = 0 mod & and3; = 0 mod 2, j responds ta with a Abp(1)
message. Note that with,, the only possible omission fault is when a node receiviesmbers whose sum
is even, but does not return anp (1) message.

Now consider an executiof), of A in which some seX of nodes sends numbers to a nodg¢ ¢ X
such that the sum is even. We observe that in the correspgpedigcutione,, it is necessary that at least
one correct node learns every single message sent or rédsiveecorrect node to decide whether or not an
omission fault exists. Indeed, if at least one message isimgiswe can always find a compatible correct
execution in which the node is correct, which allows the nodemit messages without any risk. Therefore,
any solutionm must ensure that at least one correct nedeceives a copy of each message sent or received
by any correct node. Since up fonodes can be faulty i, this requires that at least some sebf
nodes withjw| > f + 1 receives each of these messages, which requires a messaglexity of at least
1+2-(f+1)=2f+3.

However, this is not yet sufficient because, since a corregé n may not know the exact set of nodes
that are correct with respect td A;) (only a superset of it), it cannot avoid considering messagat or
received by faulty nodes. i considers a message that a faulty node claims to have received from a
nodei, this is not a problem becausenpifis authentic¢ can safely conclude thaenp(i, m, j) must appear
in any plausible execution. Howeverdiconsiders a message that a faulty nodeg claims to havesentto
a nodei, ¢ cannotconclude thakecv(i, m) must appear, sincemay never actually have semtto i. This
can cause to violate both completeness and accuracy. Note that wgatitisee whether forwardsm after
receiving it is not an option in this case, sinceould have to suspegtin the meantime, and may end up
suspecting forever if 7 is faulty and ignoresn, which would violate accuracy.

19

The only wayc can be sure that every forwarded messageventually reachedestm) is if at least
one correct node has sentto des{m). But ¢ does not know that any individual node (exceptself) is
correct. Soc can either wait forf + 1 different nodes to assert that they have sertio des{m), which
would require at least + 1 messages, or it can itself forwand to des{m), which is clearly cheaper. Since
every node inv must do this, the overall message complexity is atléast - (f +1) =3f+4. O

A.8 Upper bound for omission faults

Theorem 8 The message complexity of the fault detection problenFifoy; in the environmenty is at
most3 f + 4, provided thatf + 2 < |N|.

Proof: We can construct a solutiory as follows. For each algorithm, = picks an arbitrary set of nodes

w with |w| = f + 1. WheneverA sends or receives a messageon a correct node, (A) sendsm to
dest{m), then it attache$s complete execution prefix with respectAoup to the transmission or reception
of m, and then forwards: to each node iov. Each correct node € w maintains a set/.;" °* of messages
thanc knows to have been sent in(€), a setM;"""** ¢ knows to have been received by their destination
in ue(€), and a sefy P of prefixesc has received. Whenreceives a forwarded messagge it recursively
extracts all the prefixes (i.e., the pretix,, attached tan, the prefixes attached to any message sent or
received inep,,, etc) and adds them tB P. Also, c recursively extracts all the sent messages from these
prefixes and, for each such messagehat is not yet inM/;2¥"*, ¢ forwardsm’ to des{m’) and then adds

m/ to M PP"". Finally, c recursively extracts all the received messages from thesixgs and adds them
to M PP,

Let j be any node other than let ep; be the longest prefix of in £P, and letX; be the set of all
messages: that have been sent jdi.e.,j € M,;"’"" anddes{m) = j) but not yet received iap,. Thenc
suspecty iff a) EP contains a prefix of that is not correct with respect tb;, b) £ P contains a prefix that
is not itself a prefix okp;, or c) there is no infinite extensicnp; of ep; such thatep; is correct with respect
to A;, the inputs inep;. \ ep; are the messages ix; in any order plus an arbitrary number of terminal inputs,
and; does not send any messageszip\ ep; (recall that, in Section 2.2, we assumed that this is de@jlab
As a special case,remembers the first messagg in X; and, ifm; appears in the next instance«f;, c
precedes its next fault notification by one that does notaiorjt

It is easy to see that eaeh(A) is an extension ofi, and that it satisfies the nontriviality requirement.
Therefore, we only need to show thats complexity is at mos8f + 4, and that eachy(A) satisfies the
completeness and accuracy requirements.

Complexity: Correct nodes send each outgoing message to the corresgamestination, and they
forward each incoming and outgoing message tofthe 1 nodes inw, which requires at mostf + 3
messages for each message:iffe). In addition, each node in forwards each message jn(e) to its
destination at most once, which requires another 1 messages and brings the totaBtb+ 4. The only
way for a faulty node to cause the nodes.io send additional messages is to add more messages to the
attached prefixes, but these messages are inevitably méppe@) as well.

CompletenessFirst, consider what it means fof A, ¢*(C,), CUS) to be empty whem (A, ¢T(C, e),
C'US) is not: it means that any executiehthat is plausible given the messages sent and received i®ctor
nodes is ruled out by the fact that some messagghould have been sent from or bin ¢’ but was not
sent from or toC in e. Clearly, the first case will be detected because of the m®fixcluded with each
message; if the nodes it sent some message’ that they could only send they had previously received
some message from the nodes irC”, then the prefix included with’ would have to includen’, which is
impossible because the faulty nodes cannot forge messggesdirect node. Hence, only the second case
remains: Every’ € w(4,¢1(C,e),C US) must contain at least one messageent from some € S to
somec € C such thatn is never received by’ in e.

20

At least one correct nodec w needs to know ™ (C, . (€)), that is, the setd/,,,; andM;,, of messages
sent and received by correct nodes, respectively. Howewem safely approximate them By “*?"°* and

out

M PPTO% - Clearly, we eventually get/,,, € M, and M;,, C M """, since correct nodes forward
incoming and outgoing messages:td he approximate sets may also contain messages sent hefaudg
nodes, but this does not affect completeness, since aditfacts can only reduce the set of executions
(A, ¢t (C,e),C US); hence, if the above condition holds for the entire set, isheertainly holds for any

of its subsets as well. Furthermore, the message the above condition is a message sent to a correct node
j, and, since the messages of a correct node cannot be fongefdutty nodes cannot causeto be added

to M;"P"°" unless;j has actually received it.

Now consider a fault instance4, C, S,e) € Foar. If |S| = 1, ¢ will suspect the node il$ because
of condition c). If|S| > 1, there is no correct execution of the nodesSithat is consistent with the facts
known toc, so at least one of the nodesSrmust eventually commit to an incorrect prefix, which will sau
c to suspect it due to condition a) or b), or stop sending messtg altogether, which causego suspect
it due to condition c). The special case does not affect cetepéss because, if a faulty nofleefuses to
senda message that is required for some input, the correspomaéfix cannot be correct with respect to
Aj, and if j refuses taeceivea message, that message will eventually be the first messagg and the
special case will no longer apply.

Accuracy: Clearly, a correct nodg will never commit to an incorrect prefix, so noc w will ever
suspecy due to conditions a) or b). K suspectg due to condition c); will eventually receive each of the
messages iX; because: has forwarded them tg, and; will send at least one more messagewhich it
will also forward toc. m will contain a new prefix, which will causeto re-evaluatej. It is possible, of
course, that will continue to suspecf after learning ofn because new messages have been add&d to
in the meantime; however, in this case, the special caseauec to occasionally emit fault notifications
that do not contair.

Note thatr, is a generalization of the transformationwe described in the proof of Theorem 6, that is,
it also solves the fault detection problem figrp. O

A.9 Lower bound for omission faults (with agreement)

Theorem 9 Any solutionr of the fault detection problem with agreement 1g5,, in the environment’,
has message complexityr) > (|N| — 1), provided that% < f<|N|-2.

Proof: Let 7 be any solution of the fault detection problem with agreenienfo,; in environmentEy,
and letA be the following simple algorithm. When a nofleeceives a node identifigre N from its local
terminal, it sends ainG message tg, to whichj must respond with aoncmessage to. Given anyk > 1,
we now construct an execution ofA) with at leastt messages such that a status change is necessary after
every single message. Leandb two different nodes, and lgtbe an execution prefix that is initially empty.
We begin by adding & (a,b) event top, which causes to send aING messagen, to b. We know
that, if b were to crash-fault now and never sendaic message, this would be an omission fault; hence,
7 must ensure that at least one correct node learns abpwand exposes (completeness), and that any
correct node that exposedirst establishes that all the other correct nodes will exalht expose as well
(agreement). Sinc2f + 1 > N, the only way to achieve this is reliable broadcast [9] amitregnodes in
N\ {b}, which requireg|N|—1)(]N| —2) messages. Further, to ensure accuracy, each aithe 1 nodes
would have to forwardn; to b at some point, which requires anothé&f| — 1 messages and thus brings the
total to (|V| — 1)2. We now extend our prefix by simulating a crash fault oh (i.e., by not delivering
any message that is sent towabjisand by lettingr(A) run until it sends no more messages. At this point,
assuming that all the nodes are correct, every node ekeepst have exposdd and there must bgV| — 1
copies ofm; in flight towardsb.

21

Now we start delivering these messages. Sinisecorrect, it will respond to each by conveying the fact
that it has sent aonc messagens to a, which require§ N| — 1 messages. To ensure accuracy, each other
node must remové from its fault notifications once it learns abaut,; however, it must only do so when
it is sure that all other nodes know about as well. Again, sinc&f + 1 > |N|, this requires reliable
broadcast and thus anothéN| — 1)(| V| — 2) messages. Thus, we now have an execution ppedix-(A)
in which two messages are sentin(p) but at leas2(| N| — 1)?> messages are sentjinSince the situation
at the end op is exactly the same as in the beginning (no messages in flightodes exposed), we can
extendp arbitrarily by repeating the above steps, until we have fxpwdth at leastk messages. Hence, the
message complexity is at led$V| — 1)2. O

A.10 Upper bound for omission faults (with agreement)

Theorem 10 The message complexity of the fault detection problem withemnent forFH,, in the envi-
ronmentE; is at most(| V| — 1)2, provided thatf + 2 < |N|.

Proof: We can construct a solutiory by extending the transformation from the proof of Theorem 8 as
follows: Rather than forwarding messages in the way spédiimve, we require them to be sent via reliable
broadcast. This requird$N| — 1)? - k messages, which is exactly our budget. Furthermore, selizbie
broadcast implies that each node sends each new messagé tf dze other nodes, it implies in particular
that correct nodes forward each incoming and outgoing ngessato each node i, and that the nodes
in w send each forwardeah to des{m). Hence, we know that the nodesdnobtain enough information
such that one of them will eventually detect any faulfFig,;. However, because of the reliable broadcast,
we also know that any given fact that is known to one corredens eventually known to all; hence, if one
correct node suspects a nod#orever, all the others will eventually suspedorever as well. Therefore,
agreement holds.

Note thatrs also solves the fault detection problem with agreemenftgs as a special case (although
it requires more messages than the solution to Theorem & .pféves Theorem 4. O

22

Symbol

Meaning

N Set of nodes

1,7 Node identifiers

A; Algorithm of a node;

«; Transition function of a nodé

P Set of states of a node

o; State of a node

TI,TO Sets of terminal inputs and outputs

M Set of messages

m Individual message

src(m) Source of a message

des{m) Destination of a message

1,0 Sets of inputs and outputs

e Execution

elx Projection of an execution onto a set of nodés
le] Number of messages in an execution

e1 e Executione; is a prefix of executiom,

corr(A,e) | Setof nodes that are correctdmwith respect to4
C Set of correct nodes

c Individual correct node

S Set of suspect nodes

0 Fault instance

F Fault class

v Set of fault notifications

T Transformations that solve the fault detection proble
L Message map

e Execution map

Ihs State map

e A, .. Equivalent ofe, A, ... for the extension

¢ Individual fact

Z Set of facts

ot (Ce) Fact map (messages sent or received by some€)
o~ (C,e) Fact map (messagest sent or received by anyc C)
»T(Ce) Fact map ¢t (C,e) N ¢~ (C,e))

m(A, Z,C) | Plausibility map

Ey Environment with failure boung

I Maximum number of faulty nodes

~(7) Message complexity of a solutian

w Set of withesses

P(X) Power set of a seX

k,l General-purpose index variables

X General-purpose set

L Denotes messages thaf, does not map to anything

Table 2: Notation used in this paper

23

m

