Understanding the design tradeoffs for cooperative
streaming multicast

Animesh Nandi#*, Bobby Bhattacharjee, Peter Druschel®

°MPI-SWS *Rice University

fUniversity of Maryland

Technical Report MPI-SWS-2009-002
April 2009

ABSTRACT

Video streaming over the Internet is rapidly increasingapydar-
ity, but the availability and quality of the content is lid by the
high bandwidth cost for server-based solutions. Cooperand-
system multicast (CEM) has emerged as a promising paradigm f
content distribution in the Internet, because the bandwiiter-
head of disseminating content is shared among the panitsipd
the CEM overlay network. Several CEM systems have been pro-
posed and deployed, but the tradeoffs inherent in the difitede-
signs are not well understood.

In this work, we provide a common framework in which differen
CEM design choices can be empirically and systematicakyuev
ated. Our results show that all CEM protocols are inherdirtly
ited in certain aspects of their performance. We distill goserva-
tions into a novel model that explains the inherent traceafflCEM
design choices and provides bounds on the practical peafocen
limits of any future CEM protocol. In particular, the modeljec-
tures that no CEM design can simultaneously achieve aletbfe
low overhead, low lag, and high streaming quality.

1. INTRODUCTION

Video delivery over the Internet using cooperative endesys
multicast (CEM) is increasingly popular, with a number of de
ployed services (e.qg. LiveStation [23], SopCast [33], BB@yer [4]).
CEM systems are attractive primarily due to their low infrasture
cost, and provide the least expensive entry into the Intesideo
market.

The data plane for these systems can broadly be partitionied i
single-tree [11, 17, 35, 2], multi-tree [9, 29], mesh-baBt’] 30,
25, 31] and hybrid [3, 39, 24, 18, 37, 41, 19] approaches. Re-
search in CEM has focused either on the design of new pratocol
or on comparisons of complete systems. Prior research tas le
a number of partially verified “communal hypotheses”, e.batt
mesh-based systems must incur high latencies and thabasesst
systems are not resilient to churn. Yet, we still lacks a &mental
understanding of the CEM design space.

Gaining such an understanding is critical: the bandwidth re
quired for streaming high quality video will remain near timeits
of broadband network capabilities for the foreseeableréutirom
the system- and network-designer’s perspective, the CEltbpol
should efficiently utilize all available bandwidth. Frometlend-
user’s perspective, the protocol should have perfect coityi (i.e.
streaming quality), low startup delay, and preferably leg.l Un-
fortunately, no single protocol meets all of these goals.

We conduct an in-depth and systematic empirical compan$on
different CEM data delivery techniques, with the goal of end
standing the inherent tradeoffs in CEM designs. Our apprdife

fers from previous works that have compared CEM design eisoic
qualitatively [1, 21] or analytically [42, 44, 7, 22], andtWithose
that have compared specific CEM protocols empirically [Z], 4

It is not our intent to recommend any single approach or pro-
tocol. Instead, we explore the CEM design space, cleanhtifge
the tradeoffs that apply to these systems, tease out diffeoenpo-
nents that are responsible for different aspects of obddrebav-
ior, and partition deployment scenarios into regions wiiéferent
systems excel.

A systematic comparison of CEM systems is non-trivial. Ehes
systems deliver data over a diversity of data topologies (tmulti-
tree, mesh, and hybrids) which are constructed and magdais-
ing different control and transport protocols. The ovesyttem
performance depends both on the properties of the datacgypol
(how well it is able to use existing resources, how well it eath-
stand failures), and on the control protocol (how quickly tata
topology is built/healed). By necessity, existing systemplemen-
tations couple the data- and control-planes and often dferetit
transport protocols.

A full exploration of the of CEM design space would involve an
alyzing the cartesian product of all feasible data and obptanes.
Such a comparison is impractical. Instead, we present @irdfe
fort at an unbiased comparison between different data tojed,
by “factoring out” the effects of transport protocols and tontrol
plane. To neutralize the effects of the control plane, wsgmere-
sults using two different control protocols: first, we repiement,
from scratch, representative single-tree, multi-tresshreased, and
hybrid protocols in their entirety using the SAAR anycashr
tive [28]. The performance of our implementation is compégdo
“native” implementations of each of these protocols, aralies
a lower-bound on the real-world performance.

SAAR was developed exclusively as an efficient control mech-
anism (not in conjunction with any data plane). However, &ym
still introduce an unintended bias in favor of a particulatadplane
structure. Hence, we also experiment with an idealizedrobnt
plane with perfect knowledge and a configurable response, tim
which allows us to control for any biases introduced by SAAR.

For each data plane we consider, we present results under di-
verse operating conditions, including different levelaofie churn,
packet loss, and stream rates. Moreover, to model the msour
availability in real deployments, we rely on an empiricadtdbu-
tion of node forwarding bandwidths, which were obtained ®am
suring broadband hosts in Europe and the US [12].

A clean-room re-implementation of many different protecis
certainly labor intensive; however, we believe our apphohas
fundamental benefits over black-box comparisons (in wharh-c
pletely third-party systems are run and the results conegmes-
viously reported in the literature [45].

Our approach enables us to compare different approachbks wit
out bias, since the control protocol used by each schemesistly
the same, and all other parameters (control latency, nkttepol-
ogy, queuing behavior, host behavior) are identical. Oyreex
iments indicate thaall CEM protocols are inherently limited in
certain aspects of their performance, i.e., these basitalions
transcend parameter settings or control plane efficieneydiatill
these observations into a novel model that, we believe x{laas
the root causes that limit the performance of CEM protocafs]

(2) provides bounds on the practical performance limitsnyf fa-
ture CEM protocol.

The rest of the paper is organized as follows: In Section 2, we
describe related work. Section 3 provides background cstiegi
CEM designs. In Section 4, we present our methodology. &ebti
presents empirical results quantifying the tradeoffs jresenta-
tive CEM design choices. In Section 6, we propose a model for
understanding the inherent constraints in CEM design.llyjvae
conclude in Section 7.

2. RELATED WORK

Qualitative comparison Abad et al. [1] classify thirteen differ-
ent CEM protocols according to their delivery topology (mes
tree), management protocol (distributed or centralizecf|ability
(large or small group sizes), etc. They further describe mbar
of different application scenarios including multi-plagames and
media distribution. They conclude that no single protosdigst for
all applications. However, the paper contains no insigluaivhy
a particular protocol might be more suited to a particulgliap-
tion or scenario, or what advantages or disadvantages lagecint
in different designs.

Liu et al. [21] review the state-of-the-art of peer-to-pbeernet
video broadcast. They describe the basic taxonomy of pepe¢r
broadcast and summarize the design and deployment of these s
tems. Although the paper examines the tree-based and thienswa
ing overlays and some of their hybrid variants, their goaidsto
empirically compare them under different scenarios.

A number of recent mesh-based data plane protocols [43, 25,

Zhu et al. [45] compare four CEM implementations (Scattgt,ca
Overcast, Narada, and ALMI) with respect to relative deleyaity,
normalized resource usage and stress. These protocolsrare s
lated over GT-ITM [14] topologies, after all nodes have gdrand
without any churn (which ends up providing an unfair advgata
to tree-based protocols). In these experiments, the dgmtoto-
col is different in each system, making it difficult to undersd the
inherent properties of the data planes.

Analytical comparison

A number of papers [42, 44, 7, 22] analyze the inherent proper
ties of different overlay delivery mechanisms. For insgriewari
et al. [34] use an analytical model to study BitTorrent-lohbee
video streaming, and demonstrate that the swarming prioteeals
a minimum number of blocks for effective utilization of pagr-
stream bandwidth. Bonald et al. [7] focus on the properties o
different push-based data diffusion schemes. Liu et al} {@2
cus on the theoretical analysis and fundamental limitatafrpeer-
assisted live streaming using tree-based approaches.

Analytical approaches typically have to make simplifyings a
sumptions about the protocols and workloads in order to rttzde
analysis tractable. Our empirical study captures the cenityl of
real implementations and complements the insights offieyexhal-
ysis.

A short, two-page extended abstract of this work has preWou
appeared in [27].

3. BACKGROUND

We present an overview of different overlay multicast data f
warding approaches. We have implemented each of these data
planes using our common control plane.

Single-tree delivery In single-tree systems, the participating nodes
form a tree, such that there is a loop-free path from the oagti
source to each group member. The capacity of each tree lisk mu
be at least the streaming rate. Content is forwarded (iushed)
along the established tree paths. The source periodicallyes a
content packet to its children in the tree. Upon receivingea n

30] have argued that tree-based schemes are not robustléo sca content packet, each node immediately forwards a copy thits

and churn. At the same time, systems like Chunkyspread j8¥] a
SAAR [28] have demonstrated that multi-tree data planesbotim
be robust and scalable. Our work explores possible caustsefe
discrepancies. In particular, we show that the efficiencthefun-
derlying control plane and parameter selection greatlgcdf the
performance observed by tree based data planes.

Empirical comparison of specific protocols Magharei et al. [26]
compare the multi-tree and mesh-based data planes, antidenc
that mesh-based systems perform better. However, thealwcon
sions are based on an artificial scenario where a number of pee
depart but the topology is not repaired. This is an extreniet o
the control space (no control protocol); in contrast, weeekpent
with different scenarios in which thefficiencyof the control proto-
col is varied — this allows us to understand how efficient the-c
trol protocols must be for acceptable performance and hoshmu
the control overhead must be at a given performance level.

We believe that the comparison in this paper is “fairer” siitc
neutralizes the effect of the control plane (which turnstoute a
key factor in the performance of tree-based systems). Wiifgle
parameters that allow trees to outperform meshes (andveicss).
Finally, we identify limitations with each approach that &lieve
are inherent, and cannot simply be overcome with betterrabnt
planes or parameter tweaking.

dren.

Tree data planes provide low latency, but are unable tazatili
the forwarding bandwidth of all participating nodes beeaasly
interior nodes contribute. When an interior node fails, diszon-
nected subtree does not receive any data until the tree aireelp
As a result, trees are highly sensitive to the efficiency efdbn-
trol mechanism that is used to repair the tree when a nodg fail
particular, node failures or departures high up in the tflesezdata
delivery adversely. As a result, tree protocols are oftegnanted
with additional, sophisticated recovery techniques. Wscdbe
these recovery techniques in Section 4.2.4.

Examples of single-tree systems include ESM [11], Ovelld&3t
ZIGZAG [35], and NICE [2].

Multi-tree delivery In multi-tree systems, each participating node
joins k different trees. The trees are constructed such that each
member hak loop-free (and optionally interior-node-disjoint) paths
to the multicast source. The multicast source splits théerdnnto

k “stripes”. Each stripe is then disseminated in one of thestrpist

as in a single-tree system.

Each member node is an interior node in some tree(s), and a lea
node in the remaining trees. Hence, as compared to a simgle tr
the forwarding bandwidth of each member can be utilized,thad
forwarding load can be distributed more fairly among all rbens.

Since each stripe is on the order gkih the bandwidth of the orig-
inal stream, multi-trees are able to utilize forwarding daitths
that are a fraction of the stream rate.

The forest construction ensures that a single failure tfffmr-
warding on only a small number (possibly one) of ktripe trees.
Moreover, if the source uses redundant coding like erasode c
ing [6, 8] or multiple description coding (MDC) [15], theneh
effect of a stripe loss can be masked or limited to a redudtion
streaming content quality.

Since each stripe is on the order ofkih the bandwidth of the
original stream, individual nodes can support more childend
the average tree depth is lower than in a single-tree systigm w
an identical distribution of member forwarding bandwidthewer
tree depth in turn reduces delivery delays and further asaeae-
silience to faults.

SplitStream [9], CoopNet [29] and Chunkyspread [37] araexa
ples of multi-tree systems.

Mesh-based delivery In mesh-based or swarming overlays, the
group members construct a random graph. Often, a node'selegr
in the mesh is proportional to the node’s forwarding bandhid
with a minimum node degree (typically five [43]) sufficientdo-
sure the mesh remains connected in the presence of churn.

The source periodically makes a new content block available
Each node (including the source) buffers upbtof the most re-
cently published content blocks it has received. Evesgconds, a
node advertises to each of its mesh neighbors a bitmap inmtica
which of theb most recently published blocks it possesses (and is
willing to serve).

A missing block can be requested from any neighbor that ad-
vertises the block. Amongst the potential suppliers of tloely a
node is chosen randomly. As an optimization, the randomcehoi
can be biased towards nodes with more available bandwidib. T
requests for blocks are piggybacked on the bitmap adverénes
to its neighbors.

Unlike in tree protocols, the randomization in the mesh data
propagation ensures that blocks are disseminated thratighe
mesh following random paths. Hence, mesh neighbors arlg like
have received different sets of blocks at any given timegctvigin-
ables them to exchange blocks. As a result, mesh-basectpl®to
are able to utilize the forwarding bandwidth of all nodes.

The failure of a node or a network link and the efficiency of
the control plane have little impact on the swarming proto¢be
neighbors of a failed node or link simply fetch blocks fronhert
mesh neighbors while they are choosing a new random overlay

member as a new mesh neighbor. The delay in acquiring a new

neighbor does not affect the efficiency of content dissetitindas
long as it is lower than the mean node lifetime).

Both the delivery delay and join delay in swarming protocoks
proportional to the size of the content bufferThe delivery delay
in meshes is larger than in tree-based systems, becaudes lalice
not immediately forwarded.

Examples of mesh-based systems are CoolStreaming [43)-Cha
saw [30], PRIME [25], and PULSE [31].

Hybrid tree-mesh delivery Hybrid data planes attempt to com-
bine the advantages of tree- and mesh-based systems byyémplo
a tree backbone and an auxiliary mesh structure. Typidallhgks
are “pushed” along the tree edges (as in a regular tree miptaed
missing blocks are “pulled” from mesh neighbors (as in a legu
mesh protocol). The tree overlay could be either a single-tr

a multi-tree, resulting in a single-tree-mesh or a multietmesh
hybrid.

Normally, blocks are delivered along the tree edges, yigltbhw
delay. Blocks that do not arrive via the tree due to failures a
recovered via the mesh, thereby increasing robustnessedver,
the forwarding bandwidth not used for transmitting paclatsg
tree edges can be utilized by the auxiliary mesh structupeaaide
missing blocks requested by mesh neighbors, thereby isiaga
the bandwidth utilization.

Examples of single-tree-mesh systems are mTreeBone [89] an
Pulsar [24]. Bullet [18] is also a single-tree mesh but iadtef
relying on the primary tree backbone to deliver the majodty
blocks, random subsets of blocks are pushed along a given tre
edge and nodes recover the missing blocks via swarming. FBRM [
is a probabilistic single-tree mesh system. Along with wleév-
ery, each node pushes data blocks to mesh neighbors witHig-con
urable probability.

Chunkyspread [37], GridMedia [41] and Coolstreaming+ [20,
19] are multi-tree-mesh systems. In these systems, the-tradt
structure is embedded in a random mesh; the stripe treesoaire n
interior-node-disjoint.

4. METHODOLOGY

We describe our experimental methodology including oudénp
mentation of a common control plane and the various dataeplan
It was not clear to us, a priori, which specific data planeshbty
be implemented to provide a representative sampling of theym
overlay protocols that have been proposed. Instead of mmgaiée-
ing each different protocol, we have meticulously impletedrthree
basic data planes: single-tree, multi-tree and mesh-bdelacry.
One (and sometimes a hybrid) of these three paradigms foem th
basis for every protocol in the literature. The protocolffediin
their control (how the delivery structure is formed and nteiimed)
and in their recovery mechanisms (how missing data handled)

Along with the base protocols, we have implemented a range of
recovery strategies like ephemeral forwarding [3, 37]dmnized
forwarding [3], and mesh recovery [39]. We experiment witet
based systems augmented with these recovery techniques-(me
based forwarding natively incorporates “recovery”). \Wadst hy-
brid protocols that augment mesh-based systems with trele ba
bones to lower latency. And, we investigate protocols tbatltine
multiple recovery strategies, for instance, PRM [3] usdweaperal
forwarding, randomized forwarding, and mesh recovery.

By combining these base protocols and recovery technigues,
cover the major CEM protocols and approaches that have hden p
lished. Table 1 shows the range of protocols our implemiamtst
cover. We believe our results are representative of the-sffathe-
art in CEM protocol design.

By design, our data planes use a common control plane, becaus
the goal is to understand the inherent performance chaistate
of the data planes. Published performance results fromribe p
native implementations indicate that our common contrahglis
comparable or better than the native implementations.

Our implementations can be executed on Planetlab [32], Emu-
lab [40], ModelNet [36], or deployed on the general Interrigte
implementations can also be run on top of a network emulator,
which executes the actual protocol code atop an emulategbriet
with a given distribution of link delays and bandwidths.

We next describe our control plane (Section 4.1) and datzepla
(section 4.2) implementations, followed by a descriptibprmi-
tives (such as heartbeats) that are common to all protocols.

4.1 Control planes

Virtually every CEM protocol deployed or described in the li
erature has its own control plane, making it difficult to &telthe

Recovery Strategy

Base Ephemeral Randomized Mesh
Protocol Data Plane Forwarding Forwarding Recovery
ESM [11], Overcast [17], ZIGZAG [35], NICE [2], FatNemo [5] irgjle-tree
Bullet [18], mTreeBone [39] Single-tree v
Pulsar [24] Single-tree v v
PRM [3] Single-tree v v v
SplitStream [9], CoopNet [29] Multi-tree
Chunkyspread [37] Multi-tree v
GridMedia [41], Coolstreaming [20, 19] Multi-tree v v
Coolstreaming [43], Chainsaw [30], PRIME [25], PULSE [31] ebh

Table 1: CEM Protocols and Recovery Mechanisms

(b Node with value b
O Node failing predicate
] Non-group member

<x Aggregated value x

Figure 1: Anycast traversal example: Given an anycast requs
issued at the leftmost interior node in the group spanning tee,
the anycast traverses the tree in a depth-first search. The aech
only visits subtrees with members that satisfy the predicat and
whose value exceeds that of the current best known member.

performance of its data plane. Our goal is to present a tizadigal-
uation that neutralizes the effect of the control plane auitraffect-

ing data plane performance. Towards this end, we use SAAR [28
as a common control plane that allows us to isolate the datsepl
performance. SAAR implements a decentralized anycastitprén
for overlay neighbor acquisition, and can efficiently supmpoulti-
cast overlays with diverse structures [28].

Our implementations are comparable (and often better) tthan
native implementations of each data plane. Conservati®#\AR
provides an upper bound on the achievable control overhgad.
control plane implementation may exist that is more efficien
produces better overlay neighbors). The resulting dateegberfor-
mance achieved by our implementations represent lowerdsoun

We have also implemented a centralized control plane (for ne
work emulations only), which can respond to anycast regueish
a configurable anycast response time. Varying the anycssbnse
time enables us to infer the extent to which CEMs depend upen t
efficiency of the underlying control mechanisms.

411 SAAR

group A group represents a set of nodes that are members of one
data dissemination overlay, i.e., that subscribe to aqadati data
channel. The group’s control state is managed via a sparrérg
that is embedded in the control overlay and rooted at a random
member of the control overlay.

A set of state variableds associated with a group. Each group
member holds an instance of each state variable. Typicahgbes
of state variables are a node’s forwarding capacity, ctiread,
streaming loss rate, tree-depth in a single-tree data ptace

SAAR can aggregate state variables in the spanning treéh Eac
state variablg is associated with anpdate propagation frequency
fup, adownward propagation frequencyqfyn and anaggregation
operator A The values of a state variable are periodically prop-
agated upwards towards the root of the group spanning trigke, w
frequency at mosfy,p. (The propagation is suppressed if the value
of a variable has not changed). At each interior node, theegal
received from each child are aggregated using the opetatbhe
aggregated value at the root of the spanning tree is propagdatvn
the tree with frequency at mo$own State variables for which no
aggregation operator is defined are propagated only oné upve
from the leaf nodes.

Anycast: SAAR’s anycast operation takes as argumentgcap
identifier G aconstraint p anobjective function nand atraversal
threshold t The primitive “inspects” group members whose state
variables satisfyp and returns the member whose state maximizes
the objective functiom among the considered members. To bound
the anycast overhead, at mostodes are visited during a traversal
of a group control tree that SAAR maintains for each group =f
L, the first considered node that satisfies the predicate dstsel.
By default, the anycast primitive inspects candidate nadesder
of increasing delay from the invoking node. Figure 1 illasts an
example anycast traversal.

State aggregation allows SAAR to optimize its anycast. Reor i
stance, when the aggregated state indicates that no mewiltgrs
a certain subtree satisfy the constraint, then the entlvgresei can
be pruned from an anycast search. As a result, a search ltypica
considers many more nodes than it visits.

SAAR is a decentralized control plane based on a structured Example anycast traversal Figure 1 shows an example group

overlay network. All nodes participate in the SAAR contreko
lay, regardless of which content they are currently recgiviThis
overlay implements an anycast primitive, which in turn sanpe
efficient and flexible selection of data dissemination pe€erke
SAAR overlay also performs efficient, proactive state disise-
tion and aggregation. This aggregate state is used to serthe
efficiency of the anycast primitive.

Group abstraction: The key abstraction provided by SAAR is a

spanning tree. A new node wants to join the data overlay asksse
a parent that maximizes the value of an integer state varahbng
the nodes that satisfy a given constraint. There are six raebat
satisfy the constraint. Given an anycast request issudtedeft-
most interior node in the spanning tree, the anycast trasetse
tree in a DFS, pruning subtrees that contain no eligible negmb
with a value of the variable that exceeds that of the currest b
known member. In the example shown, the anycast stops adter v
iting five nodes, and yields the rightmost leaf node with thkig

3. Had the anycast been invoked with a valud ef 5, then the
anycast would have stopped after visitingodes, and yielded the
leftmost leaf node with value 2.

4.2 Data plane implementations
We next describe our data plane implementations.

4.2.1 Single-tree data plane (sT)

Nodes use a SAAR anycast to select a parent when initialty joi
ing the overlay, when replacing a failed or departed parent,
when choosing a new parent to improve performance. The ahyca
constraint ensures that the parent has spare forwardirmgitgpnd
does not result in a loop. The objective function is chosepred-
erentially select parents that have low depth in the tree.eé
node joins or recovers from a disconnect, it uses a travidnegh-
oldt = 1 to find an eligible parent as quickly as possible. A node
with forwarding bandwidttB and the streaming rate &takes on
at most|B/S| children.

In addition to the anycasts for tree repair, the nodes alaeis
anycasts for preemption and periodic data plane optintizatto
improve tree quality (tree depth, biasing high bandwidtdesoto-
wards the top of the tree).

4.2.2 Multi-tree data plane (mT)

The multi-tree data plane maintaiksseparate trees, each for-
warding a differenstripeof 1/kth of the stream rate. The constraint
and objective function is the same as in the single-tree platze.

A node joins allk trees but forwards data (i.e., accepts children)
only in its primary stripe. This construction ensures interior-node-
disjoint stripe trees: a node is an interior node in at mostsiripe
tree and a leaf in all other stripe trees. If a node has foringrd
bandwidthB and the streaming rate & then the node takes on at
most|B/(S/k) | children.

When a node joins, it biases its choice of a primary stripe to-
wards stripes with relatively low total forwarding capgcih order
to balance the available forwarding capacity amongst thipest
In particular, amongst the stripes whose resouR;dse. total for-
warding capacity) are lower than the average stripe ressiigqg,

a stripei is chosen as primary with a probability proportional to
(Ravg— R)-

Even with this flexible choice of a primary stripe, it is sfilbs-
sible that the departure of a node causes a stripe to be maritent
left with no forwarding capacity until another node joins e \th-
plement the tree transformations described in SplitStrf&nto
address these cases. As a last resort, a child relaxes ttie pre
cate to select a parent with forwarding capacity in a difiestripe,
at the expense of interior-node-disjointedness. Our datsepbe-
haves like SplitStream in this respect, except that the tadapri-
mary stripe selection significantly reduces the likelihaddstripe
resource exhaustion.

4.2.3 Mesh-based data plane (pM)

In our mesh implementation, a node maintains neighbors pro-
portional to its forwarding bandwidth, or a minimuafunless oth-
erwise statedk = 5). Nodes use a SAAR anycast to maintain at
leastl neighbors of good quality and accept uputaeighbors. A
node with forwarding bandwidtB accepts at mosi = |kxB/S|
neighbors. However, in order to ensure that requests fghbers
can be satisfied, the number of neighbors proactively estau is
slightly lower than the maximum number of neighbors that loan
supported. Therefore, nodes proactively estatlistax(k, u—2)
neighbors.

than the commonly used random walk [38] or gossiping [13jtec
nigues, in order to ensure identical conditions for all daltmes.
The anycast is deliberately not biased towards nearby ndades
provide high path diversity and to form a more robust mesh. In
addition, each node periodically refreshes its neightsty ¢iven if

it hasl or more neighbors of good quality. Without this periodic up-
date (and especially with low churn), nodes that joinedysactk
links to nodes that joined late, resulting in low path diitgrand
high mesh diameter.

The swarming algorithm operates as follows. The source pub-
lishes a new content block evepyseconds (typicallyp = 1). Every
swarming intervaf, mesh neighbors exchange their list of available
blocks (using a bitmap) within a sliding window of blocks eoiwng
b seconds (typicallyp = 60). The leading edge of the window at
a given node is defined by the most recent block availableeat th
node’s mesh neighbors.

After exchanging the lists, each node chooses one randark blo
from the intersection of the set of blocks it is missing arelgbt of
nodes that are advertised by some neighbor. The choice &-a sp
cific neighbor from which to request the block is also randbut,
biased towards the neighbors with the lowest bandwidtzatibn.
The block requests to a neighbor are piggybacked on thedierio
bitmap advertisements.

4.2.4 Recovery Mechanisms

Tree-based protocols often use sophisticated recovenhanec
nisms (Table 1) to mask delivery problems on the data path. We
next describe our implementation of these mechanisms. dh ea
case, we classify the recovery strategy as “reactive” (regostarts
after a failure is detected) or “proactive” (recovery istpafrbase
forwarding).

Ephemeral forwarding (EF) [Reactive] EF was introduced in [3],
and attempts to provide an uninterrupted data stream wieldata
plane is being repaired (after a node departs). In EF, whedem
does not receive data from its parent, it tries to locategiremeral
parentthat can provide the data while the overlay reconstruction
protocol “fixes” the data plane. Obviously, EF is effectivayoif

it allows n to find a suitable ephemeral parent (one with sufficient
forwarding bandwidth) quicker than the standard overlaypvery
protocol can find a new parent.

In order to quickly locate an ephemeral parent, nodes mainta
a set of mesh neighbors. Upon detecting a disconnectiok ¢ifac
a data packet from the tree parent), the root of the discaedec
subtree f) immediately tries to obtain the stream from its mesh
neighbors. EF (ephemeral forwarding) is successful as dsnany
one of the mesh neighbors can temporarily supply the strbite
n chooses only one ephemeral parent if more than one mesh-neigh
bor is capable. (Node continues to send heartbeats down its sub-
tree while locating an ephemeral parent to preclude nodésein
affected subtree from trying to institute their own recgyer

If none of noden’s mesh neighbors are able to provide a stream,
then noden sends a “delegate” message to its tree children, who
then try to find an ephemeral parent using their mesh neighbor
Upon success, the child sends the ephemeral stream iatad
down into its own subtree). In this manner, one successfomery
is sufficient for “patching” the entire subtree.

EF provides a quick fix for maintaining the tree while the data
plane recovers and finds the most suitable parent (one thugtt mi
optimize criteria such as latency and underlying bandwigiige).

EF also enables the control protocol to use larger timecudse:

We use a SAAR anycast to choose random mesh neighbors ratheduces the latency demands on tree recovery.

Randomized forwarding (RF) [Proactive] Like EF, Random-
ized forwarding (RF) was introduced in PRM [3], and uses the
auxiliary mesh structure. In RF, each overlay node, with alsm
probability (usually 1-3%), proactively forwards the daiackets
received on the tree to mesh neighbors. The intuition (prome
PRM) is that if a large subtree is affected due to a node filur
then, with high probability, a proactive recovery packefl e in-
cident upon at least one node in the subtree. When a nodeescei
arecovery packet (i.e. a packet not from its tree parerfjriards

it down its subtree, and also up to its tree parent. This poce-
curses and a single RF recovery packet is sufficient for erooy
the entire affected subtree. RF recovery packets also senae
trigger for starting EF recovery. In our implementation, iekets
are sent only if a node has sufficient spare bandwidth ledtr dtft
forwards packets on the primary data path.

Mesh recovery (MR) [Reactive] Mesh recovery systems aug-
ment the primary tree backbone with a mesh. Blocks are “mlishe
down the tree links (as in a regular tree protocol), and mégsi
blocks are “pulled” from mesh neighbors (as in a regular npesh
tocol). In each case, the tree and mesh components are inathta
and used as described in the base mechanism descripti@eptex
for the following differences.

In normal operation, no blocks are advertised and no blocks a

exchanged among mesh neighbors. MR piggybacks the buffer ad

vertisement message on the heartbeat sent éMgypically h = 1)
secs to keep the mesh neighbor connections alive. When aeode
alizes that a block from (one of) its parent(s) is overdueeduests
the block from a mesh neighbor that has the block. If it haseso r
cent buffer advertisements from the mesh neighbors, treamis a
block advertisement to all of its mesh neighbors, who redpueith
their own block advertisements.

As long as all blocks are delivered in a timely fashion wittiie
tree, MR systems behave like a pure tree-based plane, eketjat
small overhead is being incurred for maintaining mesh rzigh

Many systems, for instance PRM [3] combine multiple of these
recovery strategies, and must choose how spare bandwidtlois
cated to these different recovery schemes.

When multiple recovery schemes are used, we prioritize them
as follows: ephemeral forwarding (EF) has the highest jyidol-
lowed by mesh recovery (MR) and finally randomized forwagdin
(RF). EF has the highest priority because the data itemveeed
via EF will be pushed down the primary data delivery path aml ¢
potentially assist multiple nodes (the entire disconristgbtree).

MR is guaranteed to assist at least one node (whereas RF)js not
and hence MR has higher priority than RF.

4.3 Common Primitives

We conclude with a description of functions that are shaneoray
all data plane implementations.

Heartbeats Ineach data plane, overlay neighbors exchange heart-
beat messages evelyseconds (typicalljh = 1). However, if an-
other control message or data message has been sent to aaneigh
during the lash seconds, then the heartbeat message is suppressed,
since the message counts as an implicit heartbeat. If a raxledt
heard from its neighbor fdrx h seconds (typically; = 4), it pre-
sumes the neighbor has failed and it initiates an anycasatpe

to locate a new neighbor.

Dynamic estimation of available forwarding bandwidth As
described in the previous sections, the number of tree- @hme
neighbors a node accepts is based on the forwarding baridwidt
available for data traffic (i.eB). Therefore, nodes have to account
for their control traffic in order to compute the availablentiaidth

for data.

Each node’s control bandwidth usage is measured peritylical
(typically every 5 sec) and rounded to an integral multipleto
kbps (i.e. 1% of a 400 kbps stream data rate). A node perilbgica
adjusts its estimate & based on the measured control traffic.

When a node misses a block in the tree, then after at most one

round-trip time, the node and its neighbors have the sarmena-

Uplink bandwidth sharing Our network emulator multiplexes

tion as they would in a pure mesh-based data plane. As a result transmissions from multiple flows over the same network limk

the behavior of MR approaches that of a pure tree-based iata p
under low loss or churn, and approaches that of a pure mesgdba
data plane under high loss or churn.

Source Coding A range of different coding schemes such as
Reed Solomon Codes [6], Digital Fountain codes [8], muttsatiptive
codes [15] have been used by different systems [29, 9]. Eadh c
ing scheme has a pre-defined overhead that inflates the dteeain
width. This overhead is proportional to the erasure tolezaof the
scheme (how many packets can be lost before there is losg-in si
nal), processing overhead (order of the computation atdhece
and especially receivers) and decoding latency (how maokets:
must be received before decoding can commence). Unfodlynat
the wide variety of codes in terms of overhead, decodingniate
and processing requirements (and for some codes, thelabiai
ity) rendered it infeasible for us to experiment with specifin-
plementations. Instead, in our experiments, we simply ntethe
number/fraction of bits received at each node without aeréig
the ultimate decodability of the video stream. This meaas is-
tems that rely on source coding are not penalized (in termeeaf
ing overhead) in our evaluation; we assume that the decaaing
gorithm is able to extract useful information from everyei®ed
bit.

4.2.5 Combining recovery strategies

a round-robin fashion at a granularity of 1500 bytes (i.edgplP
MTU). Since the emulator does not model TCP/UDP level packet
dynamics, the round robin scheduler is intended to appratdrthe
behavior of multiple TCP connections sharing the node’éipl

5. EXPERIMENTAL EVALUATION

In this section, we present the results of a systematic écapir
evaluation of different data plane designs for cooperaireaming
multicast.

5.1 Experimental setup

We performed experiments using the FreePastry networkamul
tor and on PlanetLab. Unless otherwise noted, the resydtstes
here are from the emulator since it allowed us to explore many
configurations and parameters, including system sizes 19,690
nodes.

Emulated network In our emulations, we assume that the net-
work core is well provisioned, that bottlenecks occur ontytbe
access links at the edge of the network, and that the upstiekm
(rather than the downstream link) at the edge of the networid

the available bandwidth. A backbone network connects 500 st
nodes with unlimited bandwidth and with pair-wise delayavan

from the King [16] data set of measured Internet delay dateat T
delay set has a mean one-way delay of 79 ms. Each end node is

437 400 350 300 262
1.2 131 15 175 20

Stream rate (kbps)
Resulting RI

Table 2: Stream rates and resulting Rls (Monarch distribution)

connected to a randomly selected stub using a dedicatedsacce
link with 1 ms delay, infinite downstream bandwidth and an up-
stream bandwidth assigned according to an empirical bligtan
described below. The network emulator models unreliabtkgta
delivery via IP, but does not model TCP/UDP transport level e
fects.

Upstream bandwidth distributions We assigned upstream band-
widths to the access links using an empirical distributioeasured

by the Monarch [12] project. The distribution is based on suee-
ments of 1894 residential broadband hosts in Europe andhNort
America; the average (median) upstream bandwidth is 52F) (38
kbps, respectively. We use different stream rates (seeeTbio
achieve a given resource index RI (i.e., the ratio of totalpby of
upstream bandwidth to the total demand for bandwidth). llexal
periments, the multicast source has an upstream bandvhdthist
five times the stream rate.

Figure 2 shows the Monarch upstream bandwidth distribution
and the resulting node RI distribution when using a streamaoh
400 kbps (node Rl is a node’s upstream bandwidth normalized t
the stream rate).

Node’s Resource Index (RI) (logscale)

0.1 0.5 1 2 5 10
1 T T e T
e
0 ._‘_!"‘r
S o0s8f i
2 i
“— 1
S P
c i
S 06} i g
5] r
Q f
o i
S o4l i ,
= d
] i
=] !
E o2} E i
(s} i
H Upstream-Bandwidth —=-=-
E—— i RI ‘(400kbps,AngI:l.31)

1000
Node’s Upstream Bandwidth (logscale, kbps)

Figure 2: Upstream Bandwidths and RI assignment

Session time We model different rates of churn in the group
membership by varying the session time, i.e., the average fior
which a node remains subscribed to a group. Session timebare
sen from an exponential distribution with a mearSafeconds and
a minimum of 1 second. We present results v8ts 120 seconds

andS= 300 seconds. To maintain a large instantaneous group size,

nodes re-join the same channel 15 sec after leaving. Theeohos
session time distribution is consistent with findings fromeeent
analysis of an IPTV system [10], which shows that most sessio
are short due to channel surfing, and a small proportion cices
last tens of minutes or more.

Packet loss rate We model packet loss using an exponential dis-
tribution with a mean loss rate &f We experiment with = 0, 1,
3, and 5%.

Control plane All data planes use the SAAR control plane to

acquire overlay neighbors. At the start of the experimemtode
joins the shared control plane, and then joins data charioeks
time determined by the session time distribution. We peis$iim
cally assume that nodes leave a data channel abruptlywitequt
notifying their overlay neighbors). Nodes use a timeouboffsec-
onds to declare an unresponsive data overlay neighbor dsatela
then use a SAAR anycast to replace the dead neighbor.

Nodes remain in the shared SAAR control plane throughout our
experiments. This is the intended usage for SAAR. When users
switch channels, there is no need to leave the control plaren
when a user stops watching channels, there is no need totleave
control plane, because membership in the control plane éBs v
little overhead. In a real deployment, nodes sometimesel¢ae
control plane involuntarily due to node or network failufo ac-
count for this and other factors that could impair the pen@nce
of the control plane, we perform additional experimentshvah
artificially inflated anycast response time.

Other parameters A single source node publishes the content
at intervals ofp sec Unless otherwise stated, the number of multi-
tree stripes (5), minimal number of mesh neighbofs), swarming
intervalr (1 sec), swarming buffer size (45 blocks) and various
timeouts were set to reasonable values under the giventaomli

All network emulation experiments were repeated 3 timeh dif-
ferent random number generator seeds. Each reported datigpo
the mean of the measured values; we computed the 95% cordidenc
intervals and they were extremely tight (within 1% of the méaa

all cases). Therefore, they are not shown in the plots.

[2]
c
S
@ 100 ‘ —————— —————t
% EFOONHKXHRRH KKK === =23 > SIEETE P T
T X
E 80 T *
>
o
ks
60 .
o
g :
® 40 i
("_.) sT ——
- : mT -
Qo 20 |t pM 7
&) -
S 3
g 3
LIJ 0 & Il Il Il Il Il Il

0 5 10 15 20 25 30 35 40 45

Playout lag T (sec)

Figure 3: T-continuity as a function of playout lag

[N = 100QRI = 1.5,S= 300! = 0, p = 40 mse¢sT,mT),p =
1seqpM),r = 1sech = 45blockg

5.2 Streaming quality

We first consider what proportion of the streamed contefedif
ent data planes are able to deliver within a given time pefidds
proportion has a direct influence on the quality of the digpia
video, because it determines how much of the streamed iaform
tion is available to the player by the playout deadline. We the
following metric:

T-continuity (T-C) For each session, T-C is the proportion of the
streamed bits that have arrived at the receiving node wikhsec-
onds of their first transmission by the source. Assume theceou
generates independently decodable blocks once evesgconds.
The instantaneous T-C measures what fraction of a blocka#-av
able to a receiveT secs after the source finished transmitting the

Graceful departures Abrupt departures
SAAR C:0.25s C:1s C:2s C:4s | SAAR C:0.25s C:1s C2s Ci4s
sT | 81.8 817 79.8 77.9 75.6 79.8 79.2 77.1 75.2 71.0
mT | 99.1 98.9 98.1 97.0 94.6 95.4 95.6 95.3 94.1 91.9
pM | 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Table 3: Average T-continuity (T = 45seq with different control planes (SAAR or centralized C: d with 'd’ sec of anycast response

time) [N =1000S= 3001 =0, p=40mse¢sT,mT), p=1se¢pM),r

2 1
o
[}
©
7] 0.8 7
kS
&
B 0.6 -
o
Q.
o :
o 0.4 H i
3] H
= ;
8 :
e 2 S—
o : pM
0

0 5 10 15 20 25 30 35 40

T-Join delay (T=45 sec) (sec)

45

Figure 4: T-join delay [N = 100QRI =1.5,S=3001 =0,p =
40mse¢sT,mT),p= 1sedpM),r = 1sech = 45blockg

block. The parameteF can be interpreted as the lag with which
a receiver plays out the stream. T-C specifies how much of the
stream is available to the player for a given playoutTagrheex-
pected T-continuityor a session is the mean of the instantaneous
T-continuity values over the course of the session.

In our first set of experiments, we use a group sizd ef 1000, a
stream rate of 35Rbps(which yields arRl = 1.5), a mean session
time S= 300 secand no packet loss. We use small data blocks
(p = 40 mg in tree-based systems (sT and mT) and large data
blocks (p = 1seq in the mesh (i.e. pM). In the mesh, the swarming
intervalr = 1 secand the swarming buffer size= 45 blocks

Figure 3 shows the T-continuity as a function of the playagt |
T. The mesh (pM) achieves almost perfect continuity at a lagpof
seconds. The tree-based data planes (sT, mT), on the othér ha
cannot achieve a perfect T-C for any playout lag. sT maxesbut
80% T-continuity, mT at 95%. The primary reason is that churn
affects pure tree-based systems. In an otherwise ideriqadr-
iment without churn, mT achieves 99.9% continuity; sT achsée
only 85.6%, but the reason is that it is resource-bouridl at 1.5.

At anRI = 1.75 and no churn, sT also achieves an almost perfect
99.8%.

The mesh requires a playout lag that is almost an order of mag-

nitude higher than the tree-based data planes. This resmliss

a fundamental tradeoff between pure tree-based systemguaad
swarming meshes: the former achieve low delay by pushing dat
along optimized distribution paths, but suffer when thesthp are
disrupted by churn. The latter route packets dynamicalty gm
portunistically, which makes them less vulnerable to churhin-
curs higher delays.

Among the tree-based systems, the multi-tree achieveshahig
T-continuity than the single-tree at a marginally higheg. lalwo
factors contribute to this result: (i) most node failurefeets only
one stripe and (ii) a failure tends to affect fewer nodes. aBse

= 1secb = 45blockg

—~ 100
(8]
]
(%]
o 80f .
)
P
5 60 | ,
£
=
o]
Q 40 + g
'_
(]
g
E 20 S-—Il-— —
z MT -eeeen
M
O Il Il Il Il p Il
1.2 1.31 1.5 1.75 2.0

Resource Index (RI)

Figure 5: Average T-continuity for T = 75 secsas a function
of the RI [N = 1000S = 300! = 0, p = 40 mse¢sT,mT),p =
1seqpM),r = 1sech=45blockg

most mT nodes contribute their entire forwarding bandwidtla
single stripe, their degree exceeds that of the same nodE liry s
a factors, the number of stripes. Thus, the stripe trees are shal-
lower and correspondingly morebustthan the corresponding sin-
gle tree. This is because the expected number of nodeseaffbyt
the failure of a random node decreases as the average intede
degree in a tree increases. (Intuitively, the higher theamein-
terior node degree, the shallower a tree which implies thatger
proportion of nodes are leaves or have few children.)

The mT'’s greater robustness to churn follows from the (ngdstl
interior-node-disjointedness of our multi-tree data plaA multi-
tree data plane that does not maintain this property (e.gnifspread [37])
is not necessarily more robust to churn than a single treaidtn it
still achieves much better resource utilization than alsitigee).
To confirm this, we performed an experiment with a multi-tree
system that does not attempt to build interior-node-digjstripe
trees (mT-nind). In the same scenario as used in Figure 3)imi-
maxes out at a T-continuity of only 86.9%, as compared to 95%
with the interior-node-disjoint mT. As explained aboves tteeper
stripe trees in mT-nind (with an average stripe tree dep®®in
mT-nind, as compared to only 3.8 in mT) are more vulnerable to
churn.

5.3 Join delay

The delay required to join a given content channel is another
important aspect of CEM performance. In IPTV, for instanesrs
expect to be able to switch between content channels rafitilys,

a CEM system suitable for IPTV must be able to join and start
displaying the content of a channel quickly. We use the failhg
metric to evaluate join delay:

T-Join delay Elapsed time between the instant when a node initi-
ates the process of joining a channel to the instant whendtie's
instantaneous T-continuity first reaches a value withinsiaadard

[%2]
é 100 Tt e
%] o b'e
b o
3 8ot ¢ F i
o] 14 %
3 ; H
° h N
g 60F ;i X T
g p ;
I
o r q i i
ul s H , r=1000, b=45—+—
5 i ¥ =200, r=1000, b=120--%"--
g 201t ; / p=200, r=200, b=120
3 i p=40, r=200, b=300
< ! p=40, r=100, b=300---~
w Y. p=20, r=200, b=60C
0 H_.""‘ % Il Il Il Il
0 5 10 15 20 25 30 35 40 45

Playout lag T (sec)

Figure 8: Mesh T-continuity: some examples of blocksizef
msec), swarming interval ¢ msec) and swarming buffer size
blocks) [N = 100QRI = 1.5,S= 3001 = 0]

0.8

0.6

0.4

p=1000, r=1000, b=45——

p=200, r=1000, b=120--------
p=200, r=200, b=120

Cumulative proportion of sessions

021 p=40, r=200, b=300
_ p=40, r=100, b=300--~-
o LL ‘ p=20, r=200, b=60C
0 5 10 15 20 25 30 35 40 45

T-Join delay (T=45 sec) (sec)

Figure 9: Mesh T-join delay: some examples of blocksizep(
msec), swarming interval ¢ msec) and swarming buffer sizelf
blocks) [N = 100QRI = 1.5,S=300,| =Q]

deviation of the expected T-continuity over the course adss®on.

Given a desired playout lag @f seconds and the resulting expected

T-continuity in steady state, this metric shows how longkes a

node to approach the steady state when joining a channel.
Figure 4 shows the cumulative distribution of T-Join delaysr

all sessions. The results show that the join delays for teelased

reach its maximum continuity at a lag of T=45 sec, but almiost (
within 0.5% from the maximum) does so at T=75 sec. The results
show that the pure mesh is virtually unaffected by the strestm
down to an Rl of 1.2. The mT declines somewhat below an RI of
1.5, while sT deteriorates rapidly below an Rl of 1.75. Thesmn

is that the data planes differ in their ability to utilize taeailable
forwarding bandwidth, as explained in Section 3. Note that t
trees cannot achieve perfect continuity even at an Rl of 2t@—
reason is that pure trees (without any recovery) cannotsetper-
fect continuity under churn.

Interior-node-disjointednessAs in Section 5.2, we performed ex-
periments with mT-nind, the multi-tree system that doesatteimpt
to build interior-node-disjoint stripe trees. In contr&stmT, mT-
nind’s T-continuity benefits much more from an increasedsRice
the average fanouts of the stripe trees improve, resultinghal-
lower stripe trees, which are more robust to churn. The aeera
T-continuity of mT-nind atRl = 1.2, 1.31, 1.5, 1.75 and 2.0 were
60.4, 75.1, 86.9, 89.6 and 90.1, respectively. The corretipg
average stripe tree depths were 11.6, 11.1, 8.5. 8.1 ante§pkc-
tively. In contrast, mT even at RI=1.31, had an average Tiaoity

of 94.5 and a corresponding average stripe tree depth of4o08;
These results demonstrate the benefit of the interior-uligjeint
property in building shallower stripe trees that are moteusd to
churn.

Churn and packet lossWe also experimented with higher churn
(S= 120seq and packet lossl = 3%). The results confirm the
tradeoffs between continuity, lag and join delay for treedd ver-
sus mesh data planes that we had identified in the previows-exp
iments. Higher churn, packet loss or fewer resources retheee
continuity and slightly increase the lag and join delay & tree-
based systems, while the mesh is not significantly affeciéore
resources benefit particularly the single-tree, becassabitity to
exploit available forwarding bandwidth is limited.

Anycast response timeFinally, we varied the anycast response
time of the control plane. We experiment with a response time
d =0.251,24 secs We also experiment with graceful depar-
tures where nodes send explicit departure notificatiorts taverlay
neighbors when leaving a group, rather then relying on thghre
bor detection timeout of 4 secs. Table 3 shows the resulterund
conditions identical to those used in Section 5.2, excepdifter-
ences in the control plane. We see that the pM is not affegged b
deteriorating control efficiency or abrupt departures, nehs the
trees are affected by both.

Our results raise the question as to whether the observéat-per
mance trends of mesh and tree-based systems are fundaneental

systems are an order of magnitude lower than those of the.mesh it they can be overcome with appropriate protocol design.révo

About 65% of the sT session have a join delay that is sliglethg |
than that of mT. The reason is that unlike an sT node, whicdsee
to find one parent, an mT node needs to join several stripe inee
parallel, and the slowest of the join events contributebéqadin de-
lay. However, the remaining 35% of sT sessions had conditiera
longer join delay than mT. The reason is that sT is resouoceh

at the relatively low RI=1.5 in this experiment, and thesensdles
have difficulty finding a parent with sufficient forwardingpzeeity.

5.4 Varying conditions

Stream rates We repeated the previous experiments at different
stream rates (and consequently different amounts of dlkaile-
sources). Figure 5 shows the average T-Continuitylfer 75 sec

as a function of the stream rate. We Use- 75 secin contrast to

specifically, we ask the following questions. Can the lag jair
delay in mesh-based systems be reduced to the level of assdb
systems? Can the tree-based systems match the near-gerfgéet
nuity of a mesh by incorporating recovery strategies? Weicen
these questions next.

5.5 Reducing mesh lag

We first consider swarming mesh systems. There are three ways
by which one could try to reduce the lag in the swarming mesh:
reduce the block size, reduce the swarming intervalor reduce
the size of the swarming bufféx

The results in Fig 6 show the impact of the block sipg énd
swarming buffer sizelf) on the average T-continuity (fdr= 45seqQ
and the average delivery delay of blocks, respectively. ¥dethat

theT = 45secused earlier, because at the low RI=1.2, pM does not reducing the size of the swarming buffer reduces the dgligetay

—~ 100 ——»= T 45 ; ; ‘ ‘
8 é @ p =20 ms, r =500 ms——
»n o 40r p=40ms, r=500 ms--x-- -
2 80 - x 5 35| p =200 ms, r = 500 ms |
il S p =500 ms, r =500 ms
g 2 a3} p = 1000 ms, r = 500 ms-e-- |
E] L | o
ER z 250 2 1
5 3 iy i
$ 40 i -; 20 ¥
: p =20 ms, r =500 ms—— ,g 15| 7
2 p =40 ms, r = 500 ms-+---- o 0k
5 20 p =200 ms, r = 500 ms ©
z p =500 ms, r =500 ms S L

0 | P = 100(\) ms’ r =\ 500 m\Sl_l.'_l- | < | | | | | |

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Buffer Size 'b’ (number of blocks) Buffer Size 'b’ (number of blocks)
@ (b)
Figure 6: Effect of varying the swarming buffer size in meshbased systemsN = 1000 Rl = 1.5,S= 300,| = 0]

—~ 100 o 45 T T T T
] a p =20 ms, b = 600 blocks——
” o 40r p =40 ms, b = 300 blocks--»--- 7
Q gl 4 3 a5l p =200 ms, b = 120 blocks |
il je! p =500 ms, b = 50 blocks
g 2 30t p = 1000 ms, b = 45 blocks--e--- |
E] L | o
2 60 & 251 S e -
E E '*-.._._,___.__._,.—- :
8 40} 1 3 or .
Y p=20ms, b =600 blocks—— 2 15r .
2 p =40 ms, b = 300 blocks--x---- % 10t g |
5 20 p = 200 ms, b = 120 blocks 1 ©
z p =500 ms, b =50 blocks S L E

0 ‘ p = 1000 ms, b = 45 blocks---- < ‘ ‘ ‘ ‘ ‘

50 100 200 500 1000 50 100 200 500 1000
Swarming Interval 'r' (msec) Swarming Interval 'r' (msec)
@ b

Figure 7: Effect of varying block size and swarming intervalin mesh-based systemd\ = 100QRI = 1.5,S= 300,| =]

to a point, beyond which the continuity decreases. The ressas
follows. A smaller buffer reduces the expected time untilack

is picked by a neighbor who needs it, thereby reducing perele
lays. However, the swarming buffer must have a certain mahim
size to ensure that the forwarding paths of different dateksl
are sufficiently randomized. Random forwarding paths in &m-
sure that mesh neighbors tend to have disjoints sets of dlmekil-
able, which allows them to utilize their forwarding bandthido
exchange blocks. Therefore, the continuity diminishesmithe
buffer becomes too small.

Figures 7 shows the impact of changing the block spefd the
swarming interval i) on the average T-continuity (faf = 45seq
and the average delivery delay of blocks, respectively. dgmh
data point, we set the size of the swarming buffier 0 as to
achieve the minimal delay while not sacrificing continuig, per
the results in Figure 6.

At a high level, the results show that the average delivetgyde
(which affects lag) can be reduced by reducing the swarnmiteg-i
val or employing smaller blocks down to a point, beyond wtitah
continuity decreases and delivery delay increases aghmrdason
in each case is that smaller blocks or more frequent swariming
crease overhead due to headers and control messages. \Wbken th
overheads become too large, they reduce the bandwidtrableil
for data transmissions.

Figure 8 shows the extent to which the performance of mesh-
based systems can be improved by an optimal choice of blaek si
swarming interval and swarming buffer size. The figure shows
the T-continuity as a function of the playout lag in pM, forvse
eral choices of block size, swarming interval and swarmiuifel
size. The line 'p=1000, r=1000, b=45’ corresponds to a igfmon-
figuration used in deployed mesh-based system like Coal$tre
ing [43]. As the results show, it is possible to reduce thebgg
a significant amount with an optimized configuration (see4®=
r=200, b=300’).

In summary, an optimal configuration of the swarming mesh
yields a significant reduction in the delivery delay and latpw-
ever, the delays remain significantly higher than thoseeseki by
tree-based systems.

5.6 Reducing join delays

Figure 9 shows that the T-Join delays can also be reduced sub-
stantially with the same configuration that minimizes thévdey
delay. Again, however, the delays remain significantly bighhan
those achieved by tree-based systems.

We investigated if the join delays in mesh protocols can lpe fu
ther reduced by incorporating ideas from tree-based pottdar-
geted at reducing the join delay. Specifically, we impleredrdn
optimization that allows a joining node to use ephemera par-

ST+RF+MR ----

MT+EF+MR --e--

o o
Q (3]
= 1l p=1000,=500,p=45—— | X 14 p=1000,r=500,b=45—— |
2 p=p00,r=500,b=50---x---- 2 p=500,r=500,b=50---x----
w121 p=0,r=200,b=300--*-~ - o 12 p=40,r=200,b=300----
1l 1 1l
E 10 E = 10} i
> > |
g sf £ s ~]
E 6 . 5, 6F Tk .
- L i - L i
3] 4 3] o I SN S
2,0 |8 Ll -]
g g
< O Il Il Il | Il < O Il Il Il | |
1.2 1.31 1.5 1.75 2.0 1.2 1.31 1.5 1.75 2.0
Resource Index (RI) _Resource Index (RI)
(&) pM (b) pM with fast join optimization
Figure 10: Effect of fast mesh startup optimization N = 1000 S= 300,| = 0]
2 i
§ 100 /‘._,‘—-—"‘ _______ B wp——— === § 100 i i T T A i
® .o"'/’ =
5 80 NNV VISRV NI 5 80 b
> B >
o 3 o
8 e}
2 60 . 2 60 .
o o
e e
@ 40 R ® 40 g
('_') ST —— ('_I) mT ——
= STHEF -3¢+ = MT+EF -5
g 20 ST+RF] g 20 mT+RF T
S sT+MR 3 mT+MR
Qo Qo
X X
w w

2 3 4 5 6 7 8

Playout lag T (sec)
(a) sT recovery

0 1 2 3 4 5 6 7 8

Playout lag T (sec)
(b) mT recovery

Figure 11: sT and mT recovery strategiesli = 100Q Rl = 1.5,S=300,| = 0, p= 40 msec¢r = 500msecb = 300blockg

ents to quickly fill a prefix of its buffer, in order to start tap as
quickly as possible.

A joining node seeks to finld = 5 ephemeral parents, in addi-
tion to its mesh neighbors. As in a multi-tree protocol, tlela
requests a different subset of the most recent blocks frath ek
its ephemeral parents, while starting the swarming. Torenthat
the optimization does not interfere with the base swarmimgop
col, ephemeral parents prioritize mesh request over trssgns
to ephemeral children. The joining node discontinues tleafs
ephemeral parents as soon as it reaches steady state oraitme-sw
ing window has advanced by one full buffer size Also, a node
accepts ephemeral children only once it is in steady state.

Figure 10 shows the average T-Join del@y= 75seq for the
mesh, with and without the optimization, for different coufia-
tions and a range of RIs. First, we see that regardless ofgtie o
mization, the average join delay can be significantly imptbwith
an appropriate configuration of block size, swarming iraeand
buffer size. Moreover, the same configuration that yieldskbst
continuity (Figure 8) also yields the best join delays.

Second, the fast join optimization yields a noticeable ctidn

parents.

Third, additional resources (higher RI) tend to reduce teeage
join delays. With the optimization, additional resourceduce the
join delay for all configurations, while they only benefit theor
configurations without the optimization. With the best cgufa-
tion, the fast join optimization and an RI of 1.75 or more, jihie
delay approaches that of tree-based systems.

We conclude that the fast join optimization allows meshes to
achieve low join delays that approach those of tree-basse s,
but these results can only be achieved when resources ardatiu

5.7 Improving tree continuity

Next, we investigate to what extent the continuity of treedd
systems can be improved using different recovery strade@ipecif-
ically, we use the recovery techniques for tree-based mgstie-
scribed in Section 4. Figure 11 shows the T-Continuity asatfan
of lag for sT and mT with different recovery technique®Rat 1.5.

All recovery strategies yield some increase in continuitith
the exception of EF applied to the single-tree. The reasaohais
ephemeral parents in a single tree must have sufficientadlail

in average join delay across the board, between 11% and 63%.bandwidth to support the full stream rate. Due to the largalver

However, at low RI, the join delays have high variance, bseau
only a fraction of the nodes are able to successfully acgyihemeral

of nodes with forwarding bandwidth less than the stream théze
is a shortage of eligible parents. Worse, “ephemeral aiftican
occupy resources that could be used for permanent parehmitsh w

100

80

60

40

20

Expected T-C averaged over all sessions

| | | mT_‘\-EF+MR _._.\.'_.-

0 1 2 3 4 5 6 7 8

Playout lag T (sec)
(a) High Churn [N =1000S= 1201 = 0]

100

..............

MT+EF+MR --e--

3 4 5 6 7 8

Playout lag T (sec)
(c) Anycast RTT = approx. 4 sec N =1000S= 3001 =Q]

Expected T-C averaged over all sessions

2] 2]

c c

S S

0 0

(%] [%]

3] 3]

(%] (%]

T T

5 80 - 5 80 i
> >

o o

e} ©

o 60 - o 60 -
o o

g ¢

© 40 - © 40 -
8 mT —— g mT ——
= MTHEF - = MTHEF -

g 20 mT+RF] o 20 mT+RF]
8 mT+MR 3 mT+MR

o o

> x

1] L

100 T T rs '

mT+RF -
mT+MR
| | mT_‘\-EF+MR _._.\.'_.-

3 4 5 6 7 8

Playout lag T (sec)
(b) Packet Loss N =1000S= 3001 = 3%]

100 T \ \

MT+EF+MR --e--

0 1 2 3 4 5 6 7 8

Playout lag T (sec)
(d) Large Scale N =10,000S= 3001 =0]

Figure 12: mT recovery under more severe conditionsRI = 1.5, p = 40 msecr = 500 msechb = 300blockg

explains the loss of performance with EF. In the multi tres-sy
tem, however, the bandwidth requirement for an ephemerahpa
is only the stream rate divided by the number of stripes dinel
many more eligible parents.

Reactive mesh recovery (MR) achieves perfect continuity, b
only at a substantial lag. This is not surprising, becauseesshm
is used to recover blocks that do not arrive via the tree. Band
forwarding (RF) is very effective with sT. The reason is ttiz
many leaf nodes in the single tree with available bandwidtlow
the stream rate can contribute to the system via random fdimg
However, the additional stream data received via RF com#s wi
additional lag.

Focusing on the upper left part of the plots (which shows what
fraction of the stream is delivered with low lag), we see #ptemeral
forwarding (EF) is the only recovery technique that incesathe
proportion of the stream data delivered with low lag, whepliagl
to mT.

When optimizing for lag, EF is the best technique for mT and
RF is best for sT, under the given conditions. When optingjzin
for continuity, MR is best. The combinations of EF+MR for mT
and RF+MR for sT constitute a compromise that achieves gerfe
continuity, albeit at a larger lag.

5.8 Recovery under severe conditions

Figure 12 shows the results for mT recovery techniques undee

severe conditions, namely high churn, packet loss, largemmsize
and inflated anycast response times. In general, the samdstre
hold: EF remains the most effective technique when lag mstte
while MR remains most effective for continuity.

Random forwarding (RF) adds significant lag at large scae, b
cause it increases the lengths of the forwarding paths. # slo
control plane (4 seconds anycast response time) affectputiee
tree-based data planes, because it increases tree repair HF,
however, does not depend on the control plane and masks-the ef
fects of a slow control plane almost completely. Large shakethe
strongest effect on the lag, while packet loss has the stsirgffect
on continuity. However, recovery remains effective in alses.

Figure 13 shows how increasing the Rl to 2.0 (i.e., lowerhey t
stream rate) affects the performance of the various regdeeh-
niques with the single-tree and multi-tree data plane. Véenusre
severe conditions of both high churn and packet loss in tps-
ment, to see whether additional resources allow the regdeeh-
nigues to mask these. The results show that all recoveryitabs
are effective, but RF in particular is able to take advantdglee ad-
ditional resources. Moreover, the combination of the recptech-
nigues works very well: sT+EF+RF+MR and mT+EF+RF+MR
approach almost perfect continuity at a lag of only 4 respelgt
3 seconds under these harsh conditions! Also note that warder
RI=2.0, the performance of sT is not very different from tbét
mT, whereas at RI=1.5 the sT is resource bound because ofits i

100

ST ——]

Expected T-C averaged over all sessions

STHEF -+
ST+RF
ST+EF+RF 1
ST+EF+RF+MR ----
| | | \ST+MR |
2 3 4 5 6 7 8

Playout lag T (sec)
(a) sT recovery

[2]

c

S

@? 100 BT i it

k. o

o ,e#xxx FURT. LY APV S Keneeennnd Honnnnnnn

5 80F

>

o

3

o 60 .

8

g

© 40 mT ——]

(@)

hd MTHEF oo

Z mT+RF

g 2 mT+EF+RF 1

8 MT+EF+RF+MR --e--

L%- 0 | | | \rnT+MR |
2 3 4 5 6 7 8

Playout lag T (sec)
(b) mT recovery

Figure 13: sT and mT recovery strategies under high RI, high burn and packet loss N = 100QRI = 2.0,S= 1201 = 3%,p =

40 msecr = 500msech = 300blockg

100

80

60

40 {3l

Expected T-C averaged over all sessions

20 i MT+EF ——e-- 7
STHRF+MR -+~
o | _MT+MR -~
0 5 10 15 20 25

Playout lag T (sec)
(a) Planetlab results

100

o -® r_..’.—‘l' v

2 4
x’}j’.x_‘x_‘.!“*_‘. P a3 3 Xt I3 L DR EAEREENIRIEE 3
i s

80

Expected T-C averaged over all sessions

mT - 7
pM
sT+RF
MT+EF -—e-- 7
ST+RF+MR ---=+----
‘ ‘ MT+MR --e--
5 10 15 20 25

Playout lag T (sec)
(b) Corresponding emulation results= 2%)

Figure 14: Planetlab vs emulation results: T-Continuity asa function of playout lag T[N = 350 RI = 1.5,S = 300 Monarch p =

200msec¢r = 1 secb = 120blockg

ability to utilize resources effectively.

The overall conclusion we can draw is that although effeatar
covery techniques exist that can increase the continuithiefree-
based systems, no combination of recovery techniques oaui-si
taneously match, when resources are constrained, theprefact
continuity of a swarming mesh and the low delivery delay,dad
join delay of a tree-based system. However, when resourees a
abundant (e.g.RI = 2.0), then tree-based systems with recovery
can achieve low lag, join delay and high continuity even ursdke
verse conditions. Mesh-bases systems, on the other hamédyac
high continuity under high churn, packet loss and constdire-
sources, but at the expense of higher lag and join delay.

When lag and join delay are not an issue in a given application
then pure mesh-based systems are superior to trees, behayse
deliver almost perfect continuity under a wide range of ¢towls.
Tree-based systems are interesting when lag and join deddyna
portant. Moreover, when resources are abundant, the caiidyin
of tree-based techniques and recovery techniques carvadbig
lag, low join delay and high continuity.

5.9 Planetlab experiments
To validate our network emulation results, we also perfatee

periments with a deployment on 325 nodes in the Planetlabees
Planetlab is a live testbed with concurrent experimentscthapete

for CPU and network bandwidth. Therefore, experiments abe s
ject to some degree of packet loss. As a result, we compaeed th
Planetlab results with results of our network emulation paeket
loss rate of = 2%. At this loss rate, the results of the two experi-
ments matched very well.

Among the set of Planetlab nodes (across all continentd) wit
reasonable load averages, we randomly chose 325 nodesmilVe li
using a token bucket, the upstream bandwidth of each noderas p
the Monarch distribution. In addition, we had to cap bandksd
in the Monarch distribution greater than 1 Mbps, becaused@izb
limits the per-node bandwidth available to an experimens aA
result, we had to use a lower streaming rate of 300 kbps édgié
the default of 350 kbps used in earlier experiments) to aehém
RI = 1.5. We used the same bandwidth caps and streaming rates in
the corresponding emulation experiments. In the expeltisneve
use a block size = 200mseaand a swarming interval of= 1 sec

Fig 14 shows T-continuity as a function of the playout lagneo
paring the result obtained in Planetlab with the network latian
results. In the Planetlab plots, each data point is the mééweo
runs, with the 95% confidence intervals shown in the erros.bar

At a high level, the Planetlab results show the same trentleas
network emulation. However, there is one noteworthy déffere
across all data planes - the lag in the Planetlab experinseluser
than in our network emulations. This is because, most Himet
nodes have very high forwarding bandwidth, which resultairch
lower transmission delays than in the network emulation.

We also observe that the continuity achieved by singlebesed
systems (i.e. sT and sT+RF) in Planetlab is lower than théeaed
in the network emulations. The reason for this was the highgr
cast response time in the Planetlab environment (e.g. fotheT
anycast response time was 2.54 sec in Planetlab versus &7 ms
in the emulations) due to overloaded Planetlab nodes. Throon
this hypothesis, we performed an additional emulation erpnt
in thes same configuration, but using the centralized cbptame
with configurable response time. The results showed thatdhe
tinuity of single-tree based systems reduce by approxim&ts

high resource
utilization

Data + Control

low low
overhead lag
Recovery
high
continuity

when the anycast response time increases from 750 msec to 2.5

sec. A similar trend can be observed in Table 3.

Additionally, we investigated why the continuity of singiee
based systems (both for Planetlab as well as emulationssigas
nificantly inferior than what we had observed in earlier ekpe
ments (e.g. Section 5.2) that used the un-capped bandwigih d
tribution of Figure 2. Our hypothesis was that, as compaoetti¢
un-capped bandwidth distribution, the capped-bandwidtridu-
tion used here results in deeper trees, which are more \alileeto
churn and packet loss. To verify this hypothesis, we looketie
distribution of tree depths of nodes in the capped and upeshp
bandwidth distribution respectively. We observed thaty @8%
of nodes were within tree depth of 4 in the capped distrilbytas
compared to 62% of nodes within a tree depth of 4 in the un-ezdpp
distribution.

In summary, accounting for unavoidable differences betwike
PlanetLab testbed and our emulation environment, the Rlabe
results confirm the trends we had observed in the emulatgritse

6. DESIGN CONSTRAINTS IN CEMS

In Section 5, we have presented results of our experimertks wi
CEM systems. In this section, we distill our observationd era-
soning into a simple model that identifies design constsaamtd
fundamental tradeoffs for CEM systems.

For instance, our results (regardless of parameter or qobto
variation) consistently indicate that in a resource caiséd sys-
tem, tree-based data planes are not able to provide higmoagt
and mesh-based systems are not able to provide low lag. éiogpr
to our model, these limitations are inherent and are a bglproof
a set of underlying constraints that we describe next.

6.1 Model

Figure 15: Constraint Model

played out by the media player at a given node. Lower lag is
preferable.

e Low overhead Overhead measures the number of extra bits
transferred in the system, not counting the original dataer©
head includes control messages, coding for data recovery,
and duplicate data packets. Lower overhead enables more
of the available bandwidth to be used for media delivery.

We conjecture that the triangles are, in faoipossibilitytrian-
gles, in that CEM systems (and indeed any streaming systam) ¢
choose to optimize at most two properties from each trigrigiée
neverall three. A protocol may, however, trade off two (or more)
of the properties in either triangle.

The constraints are perhaps individually obvious; presgio-
gether, they provide a clear basis for putting our resultintext.
Moreover, they assert that no amount of parameter tweakipgpe
tocol engineering will be sufficient to change some of thadsawe
have observed. In the rest of this section, we discuss thereomts
imposed by each triangle, our explanation of why these cainss
arise, and how these constraints apply to the systems weshae
ied.

6.2 The constraint triangles

The Data + Contral triangle states that no data plane design
can simultaneously achieve all three of low lag, high globake-
source utilization, and low overhead.For example, a single tree
minimizes lag but cannot provide high utilization. As mplé trees
are introduced, resource utilization increases but so deshead.

design can violate. The constraints are depicted in Figbrasla
pair of inter-related triangles. We begin with a descriptaf the
vertices:

e High continuity : Continuity is a measure of the fraction of
playable bits received by a node. Higher continuity is prefe
able.

e High resource utilization: Resource utilization specifies how
well global resources (forwarding bandwidth of all nodes in
the system) are utilized. High resource utilization is pref
able.

e Low lag: Lag is the delay from the instant when a data item
was first transmitted at the source to the instant when it is

high overhead (due to frequent swarming exchanges) or high |
The underlying reason for this triangle is as follows: toiach
high resource utilization, a data plane mustdymamig i.e., be
able to use upload bandwidth of all nodes even during peibds
high churn. Such a data plane cannot maintain staticallypcoea
paths; the price for this flexibility must be paid in terms obaodi-
nation overhead on the data path. This overhead can be aptbrti
but doing so necessarily increases lag.

The Recovery triangle states that it is impossible to simultane-
ously achieve low overhead recovery, low lag, and high conti
nuity. Reactive recovery strategies either incur high lag (sihee t
receiver must detect a missing packet or heartbeat) or higthead
(lag can be reduced by increasing heartbeat frequencypctive
recovery strategies have relatively low lag but must penftslind”

Multi-tree high resource
+ utilization
source
coding /

Vary number
of stripes

Ve

Data + Control

low low
overhead lag
\ Recovery
Vary FEC
redundancy
high
continuity
(a) Multi-tree + source coding
Single-tree high resource
+ utilization
H Ve
randoml.zed raar%omized/
forwarding forwarding
probability,
/ Data + Control
low low
overhead lag

Recovery

AN

Vary
randomized
forwarding
probability

high
continuity
(c) Single-tree + randomized forwarding

high resource
utilization

Mesh

Data + Control

low

low PY
overhead <«—— Varyswarming ——» |ag
interval
Recovery
high
continuity
(b) Mesh
Multi-tree high resource
+ utilization
mesh
recovery /
Vary number
of stripes
/ Data + Control
low low
overhead «— Varyswarming . |ag
interval
Recovery
high
continuity

(d) Multi-tree + mesh recovery

Figure 16: Constraint triangles for CEM protocols. A red dot on a vertex means that the protocol optimizes the associatedetric. A
red dot on an edge connecting two vertices means that the pratol can trade off between the two metrics, by varying the inttated

protocol parameter.

repairs (without a-priori knowledge of what data was loBtjoac-
tive repair strategies that provide high continuity (with@creas-
ing lag) necessarily incur high overhead.

Performance bounds for existing CEM protocols The con-
straint triangles allow us to reason about the inherenoperdnce
limitations of all existing CEM protocols. These protoctighether
by design or otherwise) choose specific “vertices” on trenties
that largely determine their relative performance. We démon-
strate this using some example CEM protocols depicted in Fig
ure 16.

Multi-tree systems, as shown in Figure 16(a), utilize resesl
better than single-tree systems. However, this comes atdse
of increased overhead for stripe tree maintenance. The-tredt
system can trade off overhead and resource utilizationérdtita
triangle, by varying the number of stripes. As per the recpue-
angle, since the multi-tree is already optimized for low; lagprder
to get high continuity the multi-tree must incur high oveatieThe
multi-tree can, however, trade off continuity and overhbpdary-
ing the amount of source coding (e.g. FEC) overhead.

source utilization (data triangle), but this means they tneither
have high lag or incur high overhead on the data path. The mesh
can, however, trade off lag and overhead by varying the simgrm
interval. Keeping continuity constant, the overhead in ahmean
be decreased at the cost of lag (by increasing the swarmiag in
val). The recovery triangle and the data triangle both destrate
this tradeoff.

Single tree-based systems with randomized forwardind)@asrs
in Figure 16(c), cannot match the low lag of the best treethas
systems, but are able to trade off resource utilizationrtmead and
continuity depending on how many packets are being praggtiv
forwarded.

Multi tree-based systems combined with mesh recovery,@srsh
in Figure 16(d), exhibit a similar lag versus overhead tedidas a
pure mesh. They can reduce the lag of the packets recoveaed vi
the auxiliary mesh by operating the mesh swarming protocal a
higher swarming rate. This is not surprising, because tlckgta
recovered via the mesh are expected to show the same tradeoff
of a pure mesh system. The multi-tree system combined withme
recovery also demonstrates a tradeoff similar to that ofa pwilti-

Pure mesh systems, as shown in Figure 16(b), achieve high re-tree system, wherein it can trade off the resources utiliaqulish

tree

packets and the overhead of tree maintenance, by gathyén

number of stripe trees.

6.3

Implications for future protocols

The constraint triangles imply that existing and future tigb
systems that combine trees and meshes cannoamentallyim-
prove performance since each component of the hybrid iesttgj
the constraint triangles. For instance, packets in a singewith
mesh hybrid system follow the tree triangles for the packteisgo
along the tree and the mesh triangles for packets that aoeers
using the mesh.

We note that the triangles do not preclude the desigadaip-

tive protocols that change the data topology from a tree to a mesh

depending on system conditions. Such a protocol can opgifoiz
current system conditions (e.g. provide low lag using awhen

churn is low and provide high resilience using a mesh whemrchu

is high), but will again be unable to simultaneously providleof
low lag, high continuity, and low overhead.

The constraint triangles model we have presented was atigin
inspired by observations based on our experiments. We eseH f

back from the model development to direct our experimentd, a
the results from our experiments to refine the model. We \zelie

the triangles, as presented, reflect an accurate synopsis oé-
sults and intuitively present the reasons behind inheneritations
of CEM data planes.

7.

We have performed a systematic empirical study of CEM data

CONCLUSION

delivery techniques. By factoring out the control plane, wmere

able

ing data plane designs and recovery techniques. We evahmte

to isolate the inherent performance characteristioaipet-

design choices under a range of conditions that are likebrise
in a practical deployment.

Our study covers all basic dataplane designs, hybrid desém
all major recovery techniques. Moreover, we study new combi
tions of recovery techniques and contribute a novel optition
to reduce the join delay of mesh dataplanes. Our empiricallte

demonstrate the inherent tradeoffs of CEM design choicek. A

though some of these tradeoffs were expected, this is theviirk
that systematically explores the design space to demdastrat
these tradeoffs are inherent.

Finally, we condense our findings into a simple model thattide
fies what we conjecture to be fundamental constraints thetEid
design can violate. In particular, the model asserts thaCBM
design can simultaneously achieve all three of low overhkmd
lag, and high continuity.

8.
[1]

(2]

(3]

[4]

REFERENCES

C. Abad, W. Yurcik, and R. Campbell. A survey and
comparison of end-system overlay multicast solutions
suitable for network centric warfarBroceedings of
SPIE’04 pages 215-226, 2004.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Smla
Application Layer Multicast. IrProceedings of the Annual
Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM’02August 2002.

S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan
Resilient multicast using overlays. Rroceedings of ACM
SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS 0®)e
2003.

BBC iPlayer.ht t p: / / ww. bbc. co. uk/i pl ayer/.

[14

(5]

(6]
(7]

8

(9]

[10]

[11]

[12]

[13]

—_—

15]

[16]

[17]

(18]

[19]

S. Birrer, D. Lu, F.E. Bustamante, Y. Qiao, and P. Dinda.
Fatnemo: Building a resilient multi-source multicast fiage.
In Proceedings of 9th International Workshop on Web
Content Caching and Distributiqr2004.

R.E. Blahut.Theory and Practice of Error Control Codes
Addison Wesley, MA, 1994.

T. Bonald, L. Massoulie, F. Mathieu, D. Perino, and

A. Twigg. Epidemic live streaming: Optimal performance
trade-offs. InProceedings of ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’QB)ne 2008.

] J. Byers, M. Luby, and M. Mitzenmacher. A digital fountai

approach to asynchronous reliable multic®stceedings of
IEEE Journal on Selected Areas in Communication
(JSAC’02) 20(8), October 2002.

M. Castro, P. Druschel, A.M Kermarrec, A. Nandi,

A. Rowstron, and A. Singh. Splitstream: High-bandwidth
multicast in a cooperative environment.Rmoceedings of the
19th ACM Symposium on Operating Systems Principles
(SOSP’03) October 2003.

M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and

X. Amatriain. Watching television over an IP network. In
Proceedings of the ACM/USENIX Internet Measurement
Conference (IMC’08)October 2008.

Y. Chu, A. Ganjam, T.S.E. Ng, S.G. Rao, K. Sripanidkalich
J. Zhan, and H. Zhang. Early Experience with an Internet
Broadcast System Based on Overlay Multicast. In
Proceedings of USENIX Annual Technical Conference
(USENIX'04) June 2004.

M. Dischinger, A. Haeberlen, K.P. Gummadi, and S. Saroi
Characterizing residential broadband networks. In
Proceedings of the ACM/USENIX Internet Measurement
Conference (IMC'07)October 2007.

A.J. Ganesh, A.M. Kermarrec, and L. Massoulie. Scamp:
Peer-to-peer lighweight membership service for largéesca
group communication. IRroceedings of the 3rd
International Workshop on Networked Group
Communications (NGC'01).ondon, UK, November 2001.
Geogia Tech Internet topology modbLt p: / / ww. cc.
gat ech/ fac/ El | en. Zegur a/ graphs. htm /.

V.K. Goyal. Multiple description coding: Compression
meets the networkroceedings of IEEE Signal Processing
Magazine 18(5):74-93, September 2001.

K.P. Gummadi, S.Saroiu, and S.D. Gribble. King: Estimz
latency between arbitrary Internet end hostsPtaceedings
of ACM SIGCOMM Internet Measurement Workshop
(IMW’02), November 2002.

J. Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoetda
J. W. O'Toole Jr. Overcast: Reliable Multicasting with an
Overlay Network. InProceedings of the 4th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI'00)October 2000.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. i
High Bandwidth Data Dissemination Using an Overlay
Mesh. InProceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP'(&)03.

B. Li, S. Xie, Y. Qu, G.Y. Keung, C. Lin, J. Liu, and

X. Zhang. Inside the new Coolstreaming: Principles,
measurements and performance implication®riiceedings
of the IEEE Conference on Computer Communications
(INFOCOM'08), April 2008.

[20] B. Li, K. Yik, S. Xie, J. Liu, I. Stoica, H. Zhang, and

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]
[33]
[34]

[35]

X. Zhang. Emperical study of the Coolstreaming system. In
Proceedings of IEEE Journal on Selected Areas in
Communication (JSAC’07), Special Issues on Advance in
Peer-to-Peer Streaming Systere07.

J. Liu, S.G Rao, B. Li, and H. Zhang. Opportunities and
challenges of peer-to-peer internet video broadcast. In
Proceedings of IEEE, Special Issue on Recent Advances in
Distributed Multimedia Communication2007.

S. Liu, R.Z. Shen, W. Jiang, J. Rexford, and M. Chiang.
Performance bounds for peer-assisted live streaming. In
Proceedings of ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS’08une 2008.

Livestation: Be there now.

http://ww. | ivestation.com

T. Locher, R. Meier, S. Schmid, and R. Wattenhofer.
Push-to-pull peer-to-peer live streaming RAroceedings of
International Symposium of Distributed Computing
September 2007.

N. Magharei and R. Rejaie. PRIME: Peer-to-peer
Receiver-drlven MEsh-based StreamingPhoceedings of
the IEEE Conference on Computer Communications
(INFOCOM'07), May 2007.

N. Magharei, R. Rejaie, and Y. Guo. Mesh or multiplestre
A comparative study of live p2p streaming approaches. In
Proceedings of the IEEE Conference on Computer
Communications (INFOCOM’'07May 2007.

A. Nandi, B. Bhattacharjee, and P. Druschel. What a mesh
Understanding the design tradeoffs for streaming multicas
In Proceedings of ACM SIGMETRICS Performance
Evaluation Review, special issue on the SIGMETRICS 2009
poster sessigrSeattle, WA, USA, June 2009.

A. Nandi, A. Ganjam, P. Druschel, T.S.E. Ng, . Stoica,

H. Zhang, and B. Bhattacharjee. SAAR: A shared control
plane for overlay multicast. IRroceedings of the 4th
Symposium on Networked Systems Design and
Implementation (NSDI'07)April 2007.

V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkiillcha
Distributing streaming media content using cooperative
networking. InProceedings of 12th International Workshop
on Network and Operating System Support for Digital Audio
and Video (NOSSDAV'02Miami Beach, FL, USA, May
2002.

V.S. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and
A.E. Mohr. Chainsaw: Eliminating trees from overlay
multicast. InProceedings of the 4th International Workshop
on Peer-to-Peer Systems (IPTPS 'Offaca, NY. USA,
February 2005.

F. Painese, D. Perino, J. Keller, and E. Biersack. PULSE
adaptive, incentive-based, unstructured p2p live stregmi
system. InProceedings of IEEE Transactions on Multimedia,
Special Issue on Content Storage and Delivery in
Peer-to-Peer Networks, VolumeMovember 2007.
Planetlab. http://www.planet-lab.org/.

Sopcastht t p: / / ww. sopcast. com

S. Tewari and L. Kleinrock. Analytical model for
bittorrent-based live video streaming.Pnoceedings of

IEEE NIME 2007 Workshqplanuary 2007.

D. Tran, K. Hua, and T. Do. ZIGZAG: An efficient
peer-to-peer scheme for media streamingPloceedings of
the IEEE Conference on Computer Communications
(INFOCOM’'03), 2003.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a
large-scale network emulator. Rroceedings of the 5th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI'02December 2002.

V. Venkataraman, K. Yoshida, and P. Francis. Chunlgagr
Heterogeneous unstructured tree-based peer-to-peer
multicast. InProceedings of the 14th IEEE International
Conference on Network Protocols (ICNP '08)ovember
2006.

V. Vishnumurthy and P. Francis. On heterogeneous ayerl
construction and random node selection in unstructured p2p
networks. InProceedings of the IEEE Conference on
Computer Communications (INFOCOM'Q®arcelona,
Spain, April 2006.

F. Wang, Y. Xiong, and J. Liu. mTreebone: A hybrid
tree/mesh overlay for application-layer live video must

In Proceedings of International Conference on Distributed
Computing Systems (ICDCS'Q3une 2007.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprésa

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed esyst
and networks. IfProceedings of the 5th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI'02), Boston, MA, December 2002.

M. Zhang, J.G. Luo, L. Zhao, and S.Q. Yang. A peer-torpee
network for live media streaming - using a push-pull
approach. IrProceedings of ACM Multimedi2005.

M. Zhang, Q. Zhang, L. Sun, and S. Yang. Understandieg th
power of pull-based streaming protocol: Can we do better ?
Proceedings of IEEE Journal on Selected Areas in
Communication (JSAC’07), Special Issue on Advances in
Peer-to-Peer Streaming Systere07.

X. Zhang, J. Liu, B. Li, and T.S.P. Yum.
Coolstreaming/DONet: A data-driven overlay network for
peer-to-peer live media streaming.Pnoceedings of the

IEEE Conference on Computer Communications
(INFOCOM'05), Miami, FL, USA, March 2005.

Y. Zhou, D. Chiu, and J. Lui. A simple model for analysis
and design of p2p streaming protocols Aroceedings of
IEEE International Conference on Network Protocols
(ICNP’07), October 2007.

Yan Zhu, Min-You Wu, and Wei Shu. Comparison study and
evaluation of overlay multicast networks. IGME '03:
Proceedings of the 2003 International Conference on
Multimedia and Expo - Volume 3 (ICME’'03)ages

493-496. IEEE Computer Society, 2003.

