
The Local and Global Effects
of Traffic Shaping

Massimiliano Marcon
Marcel Dischinger
Krishna Gummadi

Amin Vahdat

Technical Report
MPI–SWS–2008–001

October 2008





Abstract

The Internet is witnessing explosive growth in traffic due to bulk content
transfers, such as multimedia and software downloads, and online sharing
and backups of personal, commercial, and scientific data. Wide-area network
bandwidth is expensive and this cost is forcing many ISPs to deploy middle
boxes to contain bulk traffic. As a result, many Internet bottlenecks today
are economic rather than physical. That is, for many links interconnecting
distinct organizations, there is often plenty of available physical capacity.
However, the cost of actually transmitting across these link is based on peak
levels of utilization, for instance as measured by the 95% link utilization.
Thus, there are incentives to perform traffic shaping across these links to
limit peak levels of utilization.

In light of these trends, this paper makes the following contributions. We
show that appropriate inter-ISP traffic shaping mechanisms can dramatically
reduce peak levels of utilization with no impact on interactive applications
and only minimal degradation of bulk data transfers. This suggests that
in the future, it is in the self-interest of every ISP to perform such traffic
shaping at the edges of its network. Unfortunately, we show that the lo-
cal incentives to perform traffic shaping will result in dramatically negative
global slowdown of bulk transfers, with the degradation growing as a function
of the distance between the source and destination. Essentially, geographic
time zone differences and the associated offsets in the local times of peak
utilization mean that bulk transfers traveling sufficiently far will always be
throttled by some ISP between the source and destination. Our findings sug-
gest that once traffic shaping becomes predominant, alternative data transfer
mechanisms will be needed to efficiently deliver bulk data across the Internet.



1 Introduction

The Internet is witnessing explosive growth in demand for bulk content.
Examples of bulk content transfers include downloads of music and movie
files [4], distribution of large software and games [9, 38], online backups of
personal and commercial data [3], and sharing of huge scientific data repos-
itories [36]. Recent studies of Internet traffic in commercial and research
backbones [5, 24, 34] as well as academic [11] and residential [12] access net-
works show that such bulk transfers account for a large and rapidly growing
fraction of bytes transferred across the Internet.

The bulk data traffic in the Internet today represents just the tip of the
iceberg. Tremendous amounts of digital data are being delivered outside of
the Internet, for example using hard drives, optical media, or tapes [20, 21,
28], because it is cheaper and faster–though usually not more convenient or
secure–than using the Internet. On an average day, Netflix, ships 1.6 million
movie DVDs [28], or 6 petabytes of data. This is more than the estimated
traffic exchanged between ISPs in the U.S. [30]. It is debatable whether
the Internet can ever match the capacity of postal networks. However, the
convenience of online transfers will likely drive the demand to deliver more
bulk data over the Internet in the foreseeable future.

Internet bulk data transfers are expensive. A recent study [23] reported
that ISPs (or CDNs) charge large content providers, such as YouTube and
MSN Live, 0.1 to 1.0 cent per minute for a 200-400 kbps data stream. Higher
bandwidth streams will cost more. The high cost of wide-area network traffic
means that increasingly economic rather than physical constraints limit the
performance of many Internet paths. That is, even when there is plenty of
physical capacity available on a given link, ISP policies of charging customers
based on peak bandwidth utilization (often measured by the 95%-ile over
some time period) result in strong disincentives to approach the full physical
capacity of inter-AS links.

While decades of research in congestion control shows how to manage
transfers across physical bottlenecks, there is little understanding of how to
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manage transfers across economic bottlenecks. Instead, ISPs have developed
a variety of ad hoc traffic shaping techniques to control bandwidth costs (see
Section 1.1). This traffic shaping specifically targets bulk transfers because
they consume the vast majority of bytes. Unfortunately, the policies them-
selves are often blunt and arbitrary, often shutting down entire applications
without a sophisticated understanding of the resulting economic benefits.
Targeting individual applications often leads to a “cat and mouse” game
where applications or users attempt to obfuscate their behavior to prevent
rate limiting while, simultaneously, researchers develop ever more sophisti-
cated (and expensive) classification techniques.

Against this backdrop, this paper makes the following contributions.
First, we show that diurnal patterns in bandwidth consumption offer a sig-
nificant opportunity for intelligent traffic shaping that observes economic
incentives and minimizes the peak levels of bandwidth consumption. Our
proposed techniques limit the bandwidth consumed by bulk transfers during
times of peak utilization, effectively smoothing bandwidth consumption over
the course of the day. We propose and evaluate a composition of traffic shap-
ing and queueing techniques that together achieve significant reductions in
peak bandwidth, while minimally impacting completion times of individual
bulk transfers. By contrast, we show that naive traffic shaping techniques
can dramatically slow or even terminate many targeted flows.

Our results indicate that it will be in the best interest of many ASs to
perform variants of the traffic shaping techniques described in this paper.
Unfortunately, we find that once a significant portion of ASs perform such
local traffic shaping, the global system behavior degrades significantly. With
increased adoption of traffic shaping, bulk transfer performance degrades
as the end-to-end distance the transfer travels grows longer. Essentially,
differences in the peak transfer times of ASs in different time zones means
that the farther a flow travels (laterally), the higher the probability that at
least one AS will throttle the flow at any given time. Even with moderate
distances, we find that bulk transfers become constantly throttled to the
point of delivering largely no utility.

Moving forward, we belive our results have significant implications. If
indeed we enter a regime where many bulk transfers obtain poor perfor-
mance as a result of economically-incentivized traffic shaping, satisfying the
burgeoning demand for bulk transfers will require either different ISP pricing
models or novel architectures for performing high-performance bulk transfers
that respect existing ISP pricing incentives.
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1.1 Motivating Examples

This paper presents a systematic analysis of the local and global effects of
ISP traffic shaping. We motivate our study by presenting three real-world
examples where popular and important bulk transfer applications suffered as
a result of ad hoc ISP traffic shaping policies.
1. Rate-limiting applications to reduce the peak load and thereby,

reduce bandwidth costs: In 2002, the University of Washington started
limiting the bandwidth of incoming peer-to-peer file-sharing traffic to 20
Mbps because the traffic was costing it an estimated million dollars per
year [6]. Published traces of the university’s access link traffic from the
same period show that the utilization of the access link was always below
70% [32]. This shows that the university was rate-limiting out of economic
considerations rather than to avoid performance degradation for other appli-
cations. Further, this 20Mbps limit was in effect even during times of low
overall utilization (e.g., overnight) despite the fact that ISP charging policy
is typically based on 95th percentile utilization levels.
2. Blocking applications to reduce transit bandwidth costs: Some
ISPs resort to blocking certain applications rather than rate limiting them.
Comcast, the largest broadband ISP in the U.S., was recently caught blocking
Bit-Torrent connections across its inter-AS links [15]. We conducted a sim-
ple experiment to check whether this blocking is due to capacity constraints
or economic considerations. We conducted a BitTorrent transfer between a
node in Comcast’s network and a node outside it. Simultaneously, we ran a
simple TCP data transfer between the same end hosts. Comcast broke up
the BitTorrent transfer even as the TCP flow received normal throughput
and observed near-zero packet loss. This suggests that BitTorrent was being
blocked to lower Comcast’s transit bandwidth costs.1 Interestingly, we ob-
served the same behavior independent of the time of the day, including early
in the morning (5 A.M.) when network links are least utilized.

The above examples show that the bottlenecks constraining bulk data
transfers in the Internet today are often economic rather than physical. While
decades of congestion control research focused on managing transfers across
physical bottlenecks, very few studies have focused on the problem of traffic
shaping i.e., how to manage transfers across economic bottlenecks. As a
result, ISPs often deploy egregiously sub-optimal ad hoc solutions.
. 3. Local traffic shaping can have unforeseen global consequences:

Our next example is based on an attempt by one of the authors to transfer

1Our hypothesis is further supported by the fact that Comcast was not interfering with
intra-AS BitTorrent traffic [15].
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Figure 1.1: Variation in incoming traffic at Ohio State University

over a month: The traffic exhibits recurring diurnal and weekly patterns.

a large scientific data set (> 1 Terabytes) between a node located on the
west coast of the U.S. and another node in Europe. The European node was
connected to an ISP that allowed free bandwidth between 12:00 AM and 6
AM local time. Ironically, this coincided with the peak utilization of the
U.S. node, located 9 time zones away. We had to choose between forcing one
organization to pay for the transit costs, taking months to transfer the data
at some low bitrate, or resorting to out of band transmission using digital
media. In this case, we happened to choose the last technique.

Taken together, our examples motivate the following questions. First, if
the goal is to reduce bandwidth cost, what is the appropriate local traffic
shaping policy for inter-AS links? Second, as economic considerations drive
ISPs to adopt such traffic shaping policies, what is the global impact on end-
to-end transfers across the Internet? We study these two questions in this
paper.

4



2 Temporal Variation in

Internet Traffic

ISPs employ traffic shaping to reduce the peak utilization of their access links
and to lower transit costs. Existing traffic shaping techniques effectively act
as blunt instruments; they rate limit particular classes of traffic even when
there is no corresponding reduction in peak levels of utilization. One goal of
this work is to demonstrate more effective traffic shaping techniques capable
of shifting network load from periods of high utilization to periods of low
utilization. Thus, the effectiveness of traffic shaping is limited by the skew
in traffic distribution over time.

In this section, we study how network traffic varies over time by analyzing
real-world network traces. Our goal is to develop an understanding of the
potential opportunity for traffic shaping in the Internet.

Our characterization of temporal variation in network traffic is driven by
three questions that play a critical role in our analysis of traffic shaping in
later sections:
1. How large is the diurnal variation in network traffic? This varia-
tion is useful to estimate the optimal reduction in peak load one could achieve
using traffic shaping.
2. How stable is network traffic across different days? As traffic
shaping involves delaying some traffic for delivery at some future time, it is
important to know whether recent history of network load can be used to
plan future schedules. If traffic is stable across different days, ISPs can use
the knowledge of network load on the previous day when traffic shaping.
3. What is the impact of bulk flows on network load? It is important
to understand the contribution of bulk flows to network load, because (a) very
large flows tend to be more tolerant to delays, and hence traffic shaping, than
very short flows like Web traffic, and (b) traffic shaping a few very large flows
is preferable to affecting a large number of very small flows.
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2.1 Traces

We studied two types of traffic traces. First, we downloaded publicly available
traces of incoming and outgoing traffic at the access links connecting over
40 different universities to the Abilene backbone [1]. Second, we collected a
recent trace of incoming and outgoing traffic at the access link connecting
ABC 1 university campus, with a population of over 10, 000 people, to the
commercial Internet. Our Abilene traces were gathered over a period of
several months, while our ABC trace was limited to one day.

Our ABC campus trace captured the start time, size, and duration for
all TCP flows. Our Abilene traces contain Netflow [14] records of TCP flow
durations and sizes. Abilene Netflow records are based on sampling every
100th packet. To reproduce the original trace, we used commonly accepted
techniques proposed elsewhere [13, 25].

2.2 Diurnal variation in network traffic

We first analyze a month-long trace of incoming traffic at the Ohio State
University 2 for November 2007 and the day-long trace of incoming traffic at
our ABC campus network. Analysis using Abilene traces of incoming and
outgoing traffic at other universities yielded similar results.

Figure 1.1 shows the bandwidth consumed by the incoming traffic at Ohio
State during the course of the month. The bandwidth is averaged over an
interval of 5 minutes. We chose 5 minutes because it is widely believed to be
the duration over which ISPs average bandwidth for billing their customers.
The network traffic exhibits recurring diurnal and weekly patterns; we see
considerable variation in traffic during the course of a single day, and low
bandwidth usage on weekends.

Figure 2.1 focuses on the diurnal variation in incoming network traffic at
the ABC campus network. The traffic shows a clear diurnal behavior similar
to the one we observed in our Abilene trace. The traffic is significantly
lower during the early morning compared to the rest of the day; in fact,
the peak bandwidth is 8.3 times higher than the trough bandwidth. The
considerable diurnal variation in network load incentivizes ISPs to deploy
traffic shaping. By shifting some load from the peak hours to the times when
the network is less utilized, ISPs can hope to reduce peak traffic and thereby,
their bandwidth costs.

1Name obscured for anonymity.
2We chose Ohio State University as it is one of the largest universities connecting to

the Abilene network.
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Figure 2.1: Variation in incoming traffic at ABC University: The
traffic exhibits a diurnal pattern with a trough in the early morning.

Average bandwidth represents the best reduction in peak bandwidth any
traffic shaping algorithm can hope to achieve. Attempts to push the peak
below the average would lead to some flows being starved. To quantify the
optimal reduction in peak load with traffic shaping, we computed the ratio
of the daily peak bandwidth to the daily average bandwidth in our traces.
The diurnal average bandwidth is 40% to 60% lower than the diurnal peak
bandwidth in all our traces (shown in Figures 1.1 and 2.1). Thus, with
intelligent traffic shaping, ISPs can hope to reduce their peak utilization by
half.

Finally, since ISPs charge network traffic based on 95th percentile usage,
we compared daily peak utilization to daily 95th percentile utilization. On
most days, the difference was fairly small (26%), though occasionally the dif-
ference could be as high as 61%. The relative proximity of 95th percentile and
peak utilization suggests that traffic shaping can lead to similar reductions
in 95th percentile utilization.

2.3 Daily stability of network traffic

Figure 2.2 shows how the daily average, daily peak, and daily 95th percentile
traffic change during our month-long trace. It shows that while daily average
traffic remains relatively stable (with slightly less traffic on the weekends than
on weekdays), the daily 95th percentile and peak traffic change significantly.
This suggests that while ISPs may not be able to predict the peak or 95th

percentile traffic, they have a good estimate of the average demand. This
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Figure 2.2: Variation in daily average, 95th percentile, and peak

bandwidths over a month: While the average bandwidth utilization is
rather stable across days, 95th percentile and peak bandwidth vary signifi-
cantly.

Ratio Duration

Day Week Month

peak to average 2 3.6 7
95th percentile to average 1.7 1.7 1.9

Table 2.1: Although the ratio of peak to average at different time scales
varies considerably, the relative difference between 95th percentile and aver-
age is rather constant.

provides yet another incentive for ISPs to deploy traffic shaping, i.e., to tame
the unpredictable peak load to the more predictable and manageable levels
of average load.

One hypothesis for why ISPs prefer 95th percentile utilization as the charg-
ing model is that it is a more stable metric when computed across multiple
days. Table 2.1 shows how the different metrics change when computed over
the first day, first week, and entire month of the Ohio trace shown in Fig-
ure 1.1. The table shows that when we go from a day to a month, the ratio
of peak to average bandwidth increases from a factor of 2 to 7. Surprisingly,
the ratio of 95th percentile to average remains stable around 2. This not only
confirms our hypothesis, but it also shows that ISPs can reduce their 95th

percentile utilization by a factor of 2 with traffic shaping.
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Figure 2.3: Incoming traffic by flow size: Although few in number,
large flows contribute significantly to peak bandwidth.

Flow size Normalized Peak

< 1MB 0.06
< 10MB 0.13
< 100MB 0.21
< 1GB 0.70

All Flows 1.0

Table 2.2: Contribution of bulk flows to traffic peak: Removing all
flows bigger than 10MB results in a peak reduction of 87%.

2.4 Impact of bulk flows on network traffic

Table 2.3 shows the fraction of flows and bytes contributed by flows of dif-
ferent sizes in the Ohio trace. A vast majority (> 99.5%) of all flows are
less than 10MB in size. However, the small percent of flows (< 0.5%) larger
than 10MB account for almost 70% of all bytes transferred. Flows larger
than 10MB account for 0.07% of all flows and 47% of all bytes in our ABC
trace which suggests that our observations are not unique to the Ohio State
trace. Thus, bulk flows are very few in number but they account for most of
the bytes in the traffic. This means that traffic shaping of a small number of
large bulk flows can have a dramatic impact on network traffic.

Bulk flows not only account for a large fraction of bytes, but they also
contribute significantly to the peak network load. Figure 2.3 shows the break-
down of network traffic in the Ohio State trace based on the size of the flows.
Bulk flows follow the same diurnal patterns as the rest of the traffic, and
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Flow size Perc. of flows Perc. of bytes

< 1 MB 97.0% 16%
< 10 MB 99.5% 32%

< 100 MB 99.9% 54%
< 1 GB 99.99% 80%

Table 2.3: Distribution of flows and bytes: Large flows are very few in
number, but they account for a significant fraction of the total traffic.

consequently, they cause a substantial rise in peak traffic. Table 2.2 quan-
tifies the contribution of bulk flows to the peak traffic. If we remove bulk
flows larger than 10MB, the peak utilization drops by 87%. This shows that
traffic shaping bulk flows holds a tremendous potential for reducing peak
utilization.

2.5 Summary

We studied temporal variation in network traffic. We found significant diur-
nal variation in bandwidth consumption. In the limit, an appropriate traffic
shaping mechanism that can offload traffic during times of high utilization
to times of lower utilization can reduce peak and 95th percentile utilization
by a factor of 2. Average bandwidth is surprisingly predictable, which helps
a potential traffic shaper to plan future schedules. Finally, targeting a small
number of bulk flows for traffic shaping can lead to a significant decrease in
peak load.
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3 Inter-AS Traffic Shaping

In this section, we discuss issues involved in shaping traffic at the access links
of an ISP. The ISP’s goal is to reduce peak link utilization, while leaving
interactive flows unaffected and causing only minimal degradation in the
completion times of bulk flows. To this end, the ISP’s access routers classify
flows into two broad traffic classes and schedule their packets for transmission
into separate queues: a foreground queue for interactive traffic, and one or
more background queues for bulk traffic.

3.1 Analysis methodology

Server 1 Client 1

Access linkReplayed 
flow

Connecting link

Client NServer N
Figure 3.1: Simulation topology: Each flow in the trace is simulated by
setting the capacity of the server’s connecting link to be equal to the flow’s
average bandwidth.

We used trace-driven simulations to study the behavior of flows under
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various traffic shaping mechanisms. Our analysis was conducted using ns-2
and our traces were collected at the border routers of university networks (as
described in Section 2.1). While the general representativeness of university
traffic is a concern, our analysis is primarily dependent on a few characteris-
tics of the trace, such as the distribution of flow sizes and diurnal variations
in flow arrival times. In Section 2, we showed that these characteristics are
representative of broader Internet traffic.

We used the simulation topology shown in Figure 3.1 to analyze traffic
shaping over the access link. We faced an interesting challenge when we tried
to replay the TCP flows. Our traces included information about flow arrival
times, sizes, and durations, but we lacked information about flow round-trip
times (RTTs) and loss rates. To simulate packet losses, we set the capacity
of the link connecting the server node for each flow to match the average
bandwidth of the flow (see Figure 3.1). This ensures that the simulated
flows complete in similar durations as the original flows in the trace. We
pick the RTT of a flow choosing from a distribution of latency measurements
using the King tool [22].

3.1.1 Validation

 0

 20

 40

 60

 80

 100

Mon
00:00

Tue
00:00

Wed
00:00

Thu
00:00

Fri
00:00

Sat
00:00

Sun
00:00

Mon
00:00

T
ra

ffi
c 

(M
bi

ts
/s

ec
)

Time

Simulated
Original

Figure 3.2: Comparing original and replayed traces: The aggregate
bandwidth of the original trace and our simulation match very well.

We examined how well our replayed trace matches the original trace. As
flow start times, sizes and durations are inputs to the replayed trace, we
only compared the aggregate bandwidth consumed by flows at the access
links in both traces. Figure 3.2 shows that the aggregate bandwidth over
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time looks very similar. The plots match very well even when we restrict the
flows to less than a certain size. Our results suggest that our simulated trace
faithfully replays the original trace from the perspective of properties that
are important for traffic shaping.

3.2 Differentiating traffic classes

To implement traffic shaping, ISP’s access routers need to distinguish be-
tween packets belonging to interactive flows and bulk flows. The former are
sent to a higher-priority foreground queue, while the latter are scheduled
in a lower-priority background queue. At a high level, routers can identify
background flows in one of three ways. First, ISPs can rely on end hosts or
applications to mark packets that can or cannot be delayed in background
queues. ISPs can incentivize applications to do so through a tiered pricing
model [17, 19, 39]. Second, ISPs can use traffic analysis to identify packets
belonging to different applications and prioritize traffic on a per-application
basis. Application-level traffic shaping based on the analysis of packet head-
ers or content is widely deployed in the Internet today [31]. Third, ISPs can
differentiate between flows based on their size, giving lower priority to flows
larger than a certain size. Many residential ISPs are known to limit the rates
of flows that are very large or customers that use their links heavily [16].

In our analysis of traffic shaping, we differentiate between foreground
and background flows based on their size. Our choice was driven primarily
by the limitations of our trace – we have accurate information about flow
sizes but little else. In practice, an ISP might use one or more of the three
techniques we discussed above to correctly identify background flows. The
relative merits of these approaches is orthogonal to our work.

3.2.1 Optimal threshold size for background flows

We categorize all flows larger than a certain threshold size as background
flows. Determining this threshold presents a tradeoff between the number
of flows affected by traffic shaping and their potential to reduce the peak
utilization. Since no sustainable traffic shaping can push the peak utilization
below the average utilization, the ideal threshold size is the one that affects
the fewest number of flows that still allows the peak to be lowered to the
average.

Figure 3.3 illustrate this tradeoff. For each threshold value (plotted along
the X-axis), we computed (a) the fraction of affected flows (shown on the
right Y-axis) and (b) the maximum achievable peak reduction (shown on the
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Figure 3.3: Selecting the boundary between foreground and back-

ground flows: At about 10MB the tradeoff between low peak utilization
and the number of flows affected by traffic shaping is optimal.

left Y-axis). As expected, selecting a lower threshold causes more flows to be
traffic shaped and increases the magnitude of the peak reduction. However,
beyond a certain point, decreasing the threshold does not reduce the peak
further; it only affects more flows needlessly. The resulting knee in the curve
marks the optimal threshold size, approximately 10MB in this trace. Analysis
using traces of other universities showed that a majority have an optimal
threshold of around 10MB as well.

3.3 Single queue traffic shaping

We begin with an analysis of a simple traffic shaper that uses one foreground
and one background queue to separate flows into two traffic classes. The
traffic in the foreground queue is left untouched, and sent in the conventional
best-effort manner. The packets in the background are sent only when (a) the
foreground queue is empty, and (b) the link utilization is below the bandwidth
limit being imposed. This policy gives absolute priority to foreground flows
over background flows.

To enforce the aggregate bandwidth limit, we use a modified token bucket
algorithm. As in a traditional token bucket, tokens are generated at a rate
equal to the bandwidth limit to be enforced. Sending a packet consumes a
number of tokens equal to the packet’s size. However, unlike a traditional
token bucket, foreground packets may be sent even when tokens are unavail-
able. This means that the number of tokens can become negative and that
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the overall traffic would exceed the bandwidth limit when the foreground
traffic exceeds the limit. To reflect the current bandwidth metering models,
which average bandwidth over 5-minute time intervals, we reset the number
of tokens every 5 minutes. This also prevents unwanted bursts or starvation
of background traffic after a long period of low or high foreground activity.

We use the recent history of network traffic when setting the aggregate
bandwidth limit. We showed that past demand is a reasonable predictor of
current demand in Section 2. Since the best we can hope is to bring traffic
peaks down to the average, we set the daily bandwidth limit to the average
bandwidth observed in the previous day. However, we increase this limit by
5% to account for occasional load swings and increasing traffic demands over
time.

3.3.1 Evaluation: The good, the bad, and the ugly

We implemented our traffic shaper in the ns-2 network simulator, and evalu-
ated it using our traces. We present results obtained using a week-long trace
of outgoing traffic at Ohio State University. We also evaluated incoming and
outgoing traffic at this and other universities and observed similar results.

We set the threshold between foreground and background flows at 10 MB.
Since routers have no a priori knowledge of flow sizes, flows are moved from
the foreground queue to the background queues after they have transmitted
their first 10MB. Note that this does not necessarily require keeping per flow
state [26].
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The good: Near-optimal reduction in peak bandwidth consump-

tion. Figure 3.4 plots the aggregate bandwidth of flows during the week
before and after using our traffic shaper. At no time does the aggregate
traffic noticeably exceed the bandwidth limit, confirming that the techniques
we used to select the aggregate bandwidth limit and threshold size for back-
ground flows work well. Our traffic shaping reduced the peak load by 63%,
which is very close to the optimal 65% reduction one could achieve by capping
the bandwidth at average load.

The good: Interactive foreground flows remain unaffected. One
of the goals of our traffic shaper is to preserve the performance of foreground
flows. We verified this by comparing the completion times of individual
foreground flows with and without the traffic shaper. Virtually no flows
show an increase in completion time. On the contrary, a small fraction of
flows performed better when the traffic shaper is active because of reduced
competition from background traffic. Note that foreground flows account for
over 99.5% of all flows, and hence our traffic shaper leaves a vast majority of
network flows unaffected.

The bad: Bulk background flows suffer noticeable delays in com-

pletion times. The traffic shaper gives lower priority to packets from back-
ground flows. Background packets are also occasionally blocked by the token
bucket algorithm during the peak hours. Figures 3.5 (a) and (b) show the
absolute and relative delays in the completion times of background flows
due to traffic shaping. The delays are quite noticeable; 50% of background
flows suffered a delay of 6 minutes or more. In terms of relative delay, the
completion times of 50% of flows increased by a factor of 2 or more.

The performance loss suffered by flows varies based on their size. Fig-
ures 3.5 (a) and (b) also show the absolute and relative delays of background
flows with different sizes. Larger flows incur longer absolute delays in their
completion times, but they incur similar relative delays as smaller flows. This
can be explained by the fact that all background flows compete equally for
available background bandwidth independent of their size.

However, the number of flows with a given size decreases exponentially
with flow size (see Figure 3.6). This suggests that scheduling policies like
shortest-job-first might be effective at reducing the aggregate completion
times of flows. By prioritizing small background flows over large flows, such
schemes could significantly reduce the completion times of a lot of small flows
at the expense of adding a modest delay to a few very large flows. We explore
this idea in more detail later in Section 3.5.

The ugly: A non-negligible fraction of bulk background flows

terminate before completing their transfers. A more important con-
cern than performance loss of flows is TCP connection termination. This can
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Figure 3.5: Background flows experience noticeable delays: 50% of
all background flows get delayed by 6 minutes or more. In terms of relative
delay, for 50% of bulk flows their completion time at least doubles.

occur when foreground flows reach close to or exceed the bandwidth limit of
the traffic shaper, forcing background TCP flows to be excessively throttled.
Packets can be stuck in the background queue for a long duration or be
dropped when the queue is full. TCP would time-out waiting for the packets
and retransmit them [2]. After a certain number of failed retransmissions,
TCP breaks the connection concluding that the other end node has departed.
Our experiments with TCP implementations in Windows and Linux showed
that in practice TCP terminates flows when it fails to retransmit a packet
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between 5 to 15 times over a time period ranging from 60 seconds to 30
minutes. The default ns-2 TCP implementation does not demonstrate this
behavior, but we configured our simulations to terminate TCP connections
if they fail to retransmit a packet at least 5 times over a period of 60 seconds
or more.
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Figure 3.7: Traffic shaping and TCP: TCP connections fail when there
is very little background bandwidth.

We found that 570 background flows terminated early due to broken
TCP connections over the course of a week. Figure 3.7 plots the times when
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the flows terminated along with the aggregate bandwidth available to all
background flows at the time. Not surprisingly, it shows that flows break
down when background flows have very little or zero available bandwidth.
Broken TCP connections have to be restarted by end users and run counter
to our goal of transparent traffic shaping. We investigate mechanisms to keep
TCP connections alive in Section 3.4

3.3.2 Summary

In summary, our analysis of a simple single-background-queue traffic shaper
shows that it effectively lowers peak link utilization. On the positive side,
it leaves the vast majority of network flows unaffected. On the negative
side, background flows suffer noticeable delays in their completion times, and
more worryingly, a non-negligible fraction of the flows are starved to early
termination. We investigate mechanisms to address these two problems in
the rest of this section.

3.4 Keeping background TCP flows alive
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Figure 3.8: Limiting bandwidth for background flows: When the
overall available bandwidth for background flows decreases, the number of
active background flows rises sharply.

When the foreground traffic reaches or exceeds the bandwidth limit, our
initial traffic shaper allocates zero bandwidth to background flows causing
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TCP connections to time-out and expire. To avoid such failures, each back-
ground flow needs to transmit packets at some minimal rate. The key ques-
tion is how to determine the minimal aggregate bandwidth for background
flows required to keep the flows alive.

Our analysis shows that allocating a constant aggregate bandwidth for all
background flows, as ISPs typically do today [6] with their traffic shapers [31],
will not work. Figure 3.8 shows shows that the number of active background
flows rises sharply and unpredictably when there is a trough in bandwidth
allocation for bulk flows. This is expected because when foreground traffic
peaks, the traffic shaper rate limits bulk flows causing them to complete at a
much slower rate than they arrive. With any constant bandwidth allocation
to bulk flows, each flow receives decreasing bandwidth as the number of back-
ground flows grows, and eventually, this will cause TCP flows to terminate.

We choose to allocate bandwidth proportional to the number of back-
ground flows.1 For each additional flow, we allocate an additional 10Kbps
of bandwidth to the background queue. 10Kbps is sufficient to allow a TCP
flow to transmit 1 packet every 1 − 2 seconds, a minimal rate sufficient to
prevent connection termination.

We repeated the experiment with our bandwidth allocation and it resulted
in zero connection breakups, down from 570 failures without this technique.
The peak packet loss rate dropped from 47% to 5%, while the additional
allotted bandwidth caused peak utilization to increase by a negligible 9%.

Our simulations of traffic shaping using other Abilene traces (not shown
here) revealed a few scenarios where our bandwidth allocation still resulted
in termination for some connections. A closer analysis revealed the cause to
be the delay suffered by packets waiting in the background queue rather than
excessive packet loss. In these cases, packets were stuck in the background
queue for over 10 minutes. To bound the queuing delay, we impose a lower
bound on the bandwidth available to background flows.2 We repeated the
simulations setting the bandwidth lower bound such that a full background
queue can be drained in 10 seconds and observed near-zero connection failures
in all our simulations. This increases the overall peak bandwidth consump-
tion by the lower bound needed to drain the queue.

1There are well known techniques to estimate the number of flows in a router queue
without maintaining per-flow state [26].

2An alternative would have been to dynamically change or shorten the queue sizes. We
explored this option and found it runs into problems studied in detail in [27].
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Queuing Policy Average Delay

Single queue 39.5 min
Optimal shortest flow first 4.4 min

Offline, 6 queues 8.5 min
Online, 6 queues 13 min

Table 3.1: Absolute delays with ideal scheduling policies: Giving
strict priority to shortest flows considerably reduces the average delay.

3.5 Improving average completion times

Having addressed the problems with liveness of flows, we turn our attention
to reducing the completion times of flows. When traffic shaping with only
one background queue, background flows get lower priority than foreground
traffic, but no priority is enforced among the background flows. On the
other hand, we know that giving priority to the shortest background flow
would minimize the mean completion time. Shortest-job-first scheduling is
especially attractive for workloads such as ours where the number of jobs
(flows) decreases exponentially with the size of the job (See Figure 3.6).

Ideally, shortest-flow-first queuing could be achieved by using a different
priority queue for each background flow. When transmitting, packets from
the queue belonging to the smallest flow are given the highest priority. In
practice, such shortest-flow-first scheduling faces two problems: first, routers
may not have resources to implement per-flow queuing. Second, routers do
not have a priori information about the flow sizes. In the rest of this sec-
tion, we first quantify the performance of optimal shortest-flow-first queuing
assuming a priori knowledge of flow size, and then analyze the relative per-
formance of a practical implementation.

3.5.1 Optimal shortest-flow-first queuing

We simulated optimal shortest-flow-first queueing by implementing one pri-
ority queue per flow in our ns-2 simulator. Figure 3.9 compares the dis-
tributions of absolute delays in completion times suffered by flows using a
single and optimal shortest-flow-first queueing. It shows that shortest-first-
queueing improves the median delay in completion time by a factor of 11.
Table 3.1 shows the improvement in the average delay of completion times.
Optimal shortest-flow-first queueing improves the average delay by a factor
of 8, demonstrating the huge potential of shortest-flow-first queueing.
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Queuing Median 90th perc. Max.

Single queue 5.8 min 1.8 hrs 36 hrs
Online, 6 queues 4.1 sec 11.7 min 37 hrs

Table 3.2: Absolute delays when multiple queues are used: Traffic
shaping using a low number of background queues to prioritize short flows
results in a dramatic reduction of the relative delays.

3.5.2 Shortest-flow-first queueing with bounded num-

ber of queues

In practice, it is not possible to allocate a separate router queue for each
flow. So we need to map groups of flows with similar sizes to each queue. We
simulated a router with 6 background priority queues. Each queue receives
packets from flows whose size falls in a given range. Since the number of flows
decreases rapidly with the size, we choose to exponentially increase the range
of flow sizes allocated to queues. Thus, our first queue handles 10 − 20MB
flows, the second queue handles 20− 40MB flows and so on. The last queue
handles all flows larger than 320MB.

Figure 3.9 shows the delays in flow completion times using 6 background
priority queues. Performance closely matches the ideal traffic shaper that
uses one queue per flow. Table 3.1 shows that while the average delay in-
creases by a factor of 2 compared to the ideal traffic shaper, it is still a
factor of 5 better than the performance of a single background queue. Thus,
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shortest-flow-first queueing is very effective at reducing completion times
even when limited to a small number of queues.

3.5.3 Online shortest-flow-first queueing with bounded

number of queues

Thus far, we assumed offline knowledge of flow size. In practice, traffic
shapers do not have this information, and they have to infer the flow size
online. One simple way is to assign a flow to a priority queue based on the
amount of transmitted thus far. For example, a flow would be assigned to
a queue meant for 10 − 20MB flows after it sends 10MB of data. This flow
would be moved to a lower priority queue meant for 20 − 40MB flows after
it transfers 20MB of data. We simulated online shortest-flow-first queueing
with 6 background priority queues.

Figure 3.9 shows the delays in flow completion times using online shortest-
flow-first queueing with 6 background priority queues. It shows that the
online traffic shaper performs nearly as well as the traffic shaper with iden-
tical number of queues but with a priori knowledge of flow sizes. Table 3.1
shows that, compared to a single background queue, our online traffic shaper
improves the average delays by a factor of 3.

Table 3.2 compares the performance of our single background queue traf-
fic shaper with our online, shortest-flow-first traffic shaper with 6 background
queues. When we use the online traffic shaper, the median delay in comple-
tion times decreases by a factor of 80 from 5.8 minutes to 4.1 seconds. This
improvement primarily affects short background flows (i.e., those between 10
and 20MB) and in practice, this could prove crucial for increasingly popular
soft real time TCP flows like YouTube clips [40]. Similarly, the 90th percentile
delay decreases from 1.8 hours to 11.7 minutes benefiting flows smaller than
100MB. In practice, this could greatly benefit software downloads such as OS
updates and games. These short flows benefit at the expense of extremely
large flows (> 100 MB). Interestingly, the table shows that the delay penalty
suffered by the largest flow in our trace increased from 36 to 37 hours, neg-
ligible at this scale. This strongly suggests that ISPs should prioritize short
background flows at the expense of large background flows using multiple
priority queues.
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4 The Global Impact of Local

Traffic Shaping

In this section, we focus on the impact wide-spread deployment of traffic
shaping has on the end-to-end performance of bulk flows in the Internet. As
economic incentives drive ISPs to deploy traffic shaping at their inter-AS
links, long flows may be subject to traffic shaping at multiple inter-AS links
(see Figure 4.1)

Server Client

Transit links

Tier-2 ISPTier-2 ISP
Tier-1 ISP

Figure 4.1: Flow traversing multiple ISPs: There is an incentive for
each ISP along the path to perform traffic shaping at its transit links.

Our goal is to understand how bulk transfers are affected by multiple
independent traffic shapers along their paths. This is in contrast to our
analysis in the previous section that analyzed the behavior of flows passing
through a single traffic shaper.

Figure 4.2 shows the ns-2 topology we used for our analysis. We simulated
a long-running TCP flow over a multi-hop Internet path, and we used our
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university traces to simulate inter-AS traffic shaping on individual hops along
the Internet path. The details of traffic shaping are described in Section 3.1.

Traffic shapers

Bulk content
server

Bulk content
client

Bulk flow

Figure 4.2: Simulation of a long network path: We simulated a long-
distance network path by connecting 2 traffic shapers. Each traffic shaper
acts independently. A bulk transfer traverses all traffic shapers.

4.1 Multiple traffic shapers and end-to-end

performance

To understand the impact of multiple traffic shapers, we compared the per-
formance of a flow that traverses two inter-AS links with the performance of
flows that traverse each of the two inter-AS links separately. We present the
results from our analysis using the outgoing link from Ohio State University
and the incoming link at the University of Wisconsin.

Our simulations ran over a period of 4 days from Tuesday through Friday.
We focus on the results from the weekdays as the traffic shaper is largely
inactive on the weekends when there is plenty of available bandwidth.

Figures 4.3 (a) and (b) show the bandwidths a long flow achieves when
traversing only Ohio’s access link or only Wisconsin’s access links. In both
cases, the flow gets most of its bandwidth between midnight and early morn-
ing 6 AM when link utilization is at its minimum. Figure 4.3 (c) shows the
bandwidth when the flow passes through both traffic shapers. In this case,
the flow receives considerably less bandwidth compared to the cases with
only one active traffic shaper.
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(a) Traffic shaping at Ohio only
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(b) Traffic shaping at Wisconsin only
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(c) Traffic shaping at Ohio and Wisconsin
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(d) Available end-to-end bandwidth with
both sites traffic shaping

Figure 4.3: Bandwidth used by a long flow between Wisconsin and

Ohio over time: The available bandwidth is significant lower when both
sites traffic shape compared to traffic shaping at only one site.

When both traffic shapers are active, the flow’s instantaneous throughput
is bounded by the minimum bandwidth available at either of the two traffic-
shaped links. This could explain the decrease in bandwidth when using
multiple traffic shapers. Figure 4.3 (d) confirms this hypothesis. At any
given time, it shows the minimum bandwidth available at either of the two
traffic shapers. This plot matches the bandwidth received by the TCP flow
traversing both traffic shapers (shown in Figure 4.3 (c)) very well, showing
that this decrease in performance is fundamental to traffic shaping and not
due to some TCP inefficiency.

To quantify the loss in the end-to-end performance of the flow, we show
in Table 4.1 the time required to complete data transfers of varying size when
traffic shapers at Ohio and Wisconsin are operating in isolation and when
both are active simultaneously. For example, transferring 15GB of data (the
size of a high-definition DVD) takes at most 1.2 days when only one traffic
shaper is active, but twice as long when both traffic shapers are operating.

4.2 Traffic shaping impact across time zones

If multiple traffic shapers are in the same time zone they also share similar
night and day cycles. However, if they are many time zones apart from
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Size Time Required

Ohio Wisc. Both

4GB 9.8 hrs 9.6 hrs 13 hrs
10GB 12.1 hrs 12.7 hrs 1.5 days
15GB 13.4 hrs 1.2 days 2.4 days
30GB 1.3 days 1.7 days 3.5 days

Table 4.1: Completion time for different transfer sizes: Transfers
take much longer to complete with two traffic shapers along the path than
in the cases with just one traffic shaper.
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Figure 4.4: Data transferred by a long-running bulk flow: When
traffic shapers are located in distant time zones, the performance of bulk
data transfers can diminish by a factor of 20.

each other, their night and day time cycles may get out of phase. This
can cause a severe decrease in the end-to-end performance of passing bulk
flows. For example, previously we observed that each traffic shaper unchokes
background flows between 0 and 6 AM local time (Figure 4.3 (a) and (b))
as this is the time with the lowest traffic load for both sites. But if the two
traffic shapers are located in distant time zones the end-to-end path could
potentially be subject to throttling for most of the day with the period of
high load at one site coinciding with the period of low load at the other site.

In our previous simulation, the traffic shapers in Ohio and Wisconsin are
located in proximate time zones. As a result, both traffic shapers operate in
close synchrony, allowing bulk flows to achieve their maximum throughput
between midnight and early morning. We investigated the loss in perfor-
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mance as they are separated by an increasing number of time zones. To
account for the time lag between the two traffic shapers, we replayed the
trace at the distant location with the appropriate time offset.

We set up a long-running flow that transfers data over the duration of 4
days. Figure 4.4 plots the amount of data we were able to transfer for different
time zone distances of the two traffic shapers. As a point of comparison we
also plot the amount of data transferred with only one traffic shaper being
active.

The plot shows that the data transferred decreases sharply as the time lag
increases. When the traffic shapers are 12 hours apart, the diurnal patterns
are completely out of phase resulting in minimal performance; less than 5GB
were transferred during the 4 days of the simulation. In contrast, 34GB were
transferred when the two traffic shapers are proximate to each other. Note,
that taken individually, each traffic shaper can transmit at least 76 gigabytes
of data. This suggests that the end-to-end performance of bulk flows can
slow down by a factor of 20 when the path goes over two traffic shapers in
distant time zones.

Finally, all of our experiments consider the simultaneous negative impact
of only two out-of-phase traffic shapers. Real flows are likely to traverse
even more (distant) traffic shapers as the typical Internet path length spans
4−5 inter-AS links. Thus, the results in this section are likely a conservative
estimate of the global impact of widespread traffic shaping.
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5 Related work

There are a large number of studies on the composition of traffic in aca-
demic [32], residential [12], and backbone networks [5,24]. They all find that
bulk data transfers account for the majority of the bytes transmitted over
the Internet today. Applications accounting for these bulk transfers include
peer-to-peer (P2P) systems like BitTorrent [7], remote backup services [3],
online music and movie stores [4], and transfers of large scientific reposito-
ries [36]. The soaring popularity of video streaming [37, 40] and the recent
move of movie rental companies like Netflix [28] to ship movies over the In-
ternet means even more bandwidth will be consumed by bulk flows moving
forward.

This deluge of bytes is not without consequences for bandwidth costs.
Lower-tier ISPs are already starting to peer with each other [29] to reduce
transit costs and content providers are deploying P2P techniques to distribute
their bandwidth costs [23, 37]. These observations support the economic
considerations motivating our work.

Traffic shaping to save bandwidth cost is already happening. Companies
like Packeteer [31] offer middleboxes to identity and throttle bandwidth-
hungry applications. Many access networks openly admit to throttling net-
work traffic [6, 15]. Existing traffic shapers typically do not account for the
diurnal patterns of traffic and simply continuously limit applications. Our
traffic shaper on the other hand exploits diurnal variations to make intelligent
use of available resources. The techniques we use to schedule bulk flows are
similar to the well-known multilevel feedback queue scheduling algorithms
used in OS schedulers [35].

There is a large body of work on network architectures that support a
differentiated treatment of traffic classes [8, 10, 33]. Their focus is either on
giving traffic certain high quality service guarantees, or to implement a lower
service class to make use of spare capacity. While well intended, none of
these architectures is widely deployed. The focus of our traffic shaper takes
inspiration from these efforts, offering a lower service class for bulk data
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traffic. This service class minimally impacts bulk transfer performance while
reducing peak bandwidth consumption.
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6 Discussion and Conclusions

This paper explores the implications of the confluence of a number of recent
trends. First, ISPs charge their customers based on their peak levels of
utilization because they must internally provision their network for these
peaks. Second, there is significant diurnal variation in bandwidth demand
within individual ASs, a factor of 2 or more in traces we considered. Third,
the vast majority of bytes are consumed by large flows. For instance, we
found that 70% of bytes were consumed by flows larger than 10MB.

These trends taken together have led many ASs to rate limit subsets of
their traffic to reduce their peak levels of utilization, and to correspondingly
reduce their bandwidth costs. Existing techniques act as blunt instruments,
arbitrarily restricting or shutting down entire application classes without
considering the reduction to peak bandwidth consumption or the effect on
applications. For example, rate limiting peer to peer traffic in the middle of
the night is unlikely to reduce the 95th percentile in bandwidth consumption.

In this paper, we show how ISPs can take advantage of the wide variation
between peak and average case utilization to effectively smooth bandwidth
consumption over the day. Our techniques do not starve any flows and only
moderately delay the completion time of bulk flows. Taken together, our
proposed traffic shaping techniques hold the promise of significantly reducing
peak bandwidth utilization, e.g., by a factor of two or more, with no impact
on interactive traffic and only minimal slowdown for non-delay sensitive bulk
transfers.

These benefits suggest that an increasing number of ASs will employ
these techniques to reduce their bandwidth costs. Perhaps unexpectedly, we
find that what appears to be near-optimal local traffic shaping policies may
lead to global ruin for bulk flows. As more ASs perform traffic shaping, the
probability continually rises that some AS between a source and destination
is rate limiting bulk flows at a particular point in time. Interestingly, the
bandwidth available to a bulk transfer decreases with the physical distance
that the flow travels for two reasons. First, longer physical paths typically
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imply that more ASs will be responsible for data transport. Second, variation
in time zones means that peak times in different ASs will be out of phase,
making it more likely that at least one AS is currently throttling traffic.

If the trends predicted in this paper hold, many bulk transfers will essen-
tially receive no bandwidth. This limitation would come at a time when the
demand for bulk transfers is exploding, consider high-definition video down-
loads or large scientific data sets. In this context, we will require alternative
bulk-transfer architectures that at least consider the economic incentives that
led to the traffic shaping in the first place.

One scenario is for ISPs to stop charging for peak levels of utilization but
to instead adopt a different pricing model, e.g., per byte accounting. Unfor-
tunately, such charging is likely to result in additional imbalances because it
does not recognize that “all bytes are not created equal”. Not encouraging
data to be sent during times of otherwise slack usage means that network
resources that must still be provisioned for peak demand sit idle. More im-
portantly, per-byte charging would introduce even larger incentives for ASs
to more aggressively traffic shape bulk traffic.

Another approach would be to develop an alternative, incentive-compatible
protocol for bulk transfers. While such a protocol is beyond the scope of this
paper, we outline some high-level possibilities. First, we observe that bulk
transfers may still perform well as long as they are subject to traffic shap-
ing by only a single AS. Next, bulk transfers do not require much of the
semantics of TCP, e.g., in order delivery or synchronous end-to-end data ac-
knowledgment. Finally, we take inspiration from delay-tolerant networks [18]
and postal networks that stage the delivery of transfers from point to point in
the network. For instance, postal networks often take advantage of capacity
as it becomes available to move data across the network. Similarly, delay
tolerant networks leverage in-network storage to buffer data until connectiv-
ity becomes available. One could imagine analogs where data is buffered in
network until traffic throttling abates.

Overall, we find interesting tradeoffs and opportunities from the ever-
increasing demands placed by bulk transfers on the Internet infrastructure
when viewed in light of current pricing incentives. These flows display unique
characteristics, certainly relative to the use scenarios originally targeted by
TCP and IP. While alternatives to TCP have not seen widespread deploy-
ment when promising somewhat improved performance, we feel that novel
protocols supporting bulk transfers are much more likely to be adopted when
they promise significantly reduced cost.
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