
Conflict-free Quorum-based BFT Protocols

Atul Singh†� Petros Maniatis‡ Peter Druschel� Timothy Roscoe∗

Rice University† Intel Research Berkeley‡ MPI-SWS� ETH Zürich∗

Technical Report MPI-SWS-2007-001

Abstract
Quorum-based Byzantine fault-tolerant protocols for
replicated state machines allow replicas to respond to
client requests without explicitly agreeing on the request
ordering. As long as concurrent write operations do
not conflict, quorum-based protocols are more efficient
than agreement-based protocols. However, resolving con-
flicting writes and bringing replicas up-to-date with each
other is a principal performance limitation of existing
quorum protocols. We present a simple technique based
on an un-trusted pre-serializer to completely mask such
quorum-based BFT protocols from experiencing conflict-
ing writes. Experimental results show that a non-faulty
pre-serializer enables such quorum protocols to retain
their efficiency even under significant write contention.

1 Introduction
Byzantine Fault-Tolerant (BFT) protocols have received
considerable attention in the systems research community
of late, because of their useful (and provable) correct-
ness properties combined with a strong adversarial model.
With BFT replicated state machines, programmers can
write sequential, fault-oblivious code that implements a
server state machine. The protocol then ensures that the
replicated server state machine (RSM) executes requests
sequentially and atomically in the order clients submit-
ted them (linearizability), that it makes progress despite
transient network faults (liveness), and that it can mask a
bounded number of arbitrary replica failures.

There are two well-known classes of Byzantine fault-
tolerant protocols: agreement-based and quorum-based.
Agreement-based protocols, such as the well-studied

PBFT [3] protocol, require replicas to first agree on a
unique, serial ordering of requests; the requests are then
executed in that order and replies send to the clients.
Quorum-based protocols, on the other hand, are optimistic
since they do not require replicas to explicitly run an
agreement phase. Typically, quorum-based protocols re-
quire higher replication (5f + 1 compared to 3f + 1 for
agreement-based) but are more efficient since they can
complete requests in one to two communication rounds
compared to three for agreement-based protocols. How-
ever, conflicting write operations – write operations that
cause replicas to become inconsistent with each other
since they are received by different replicas in different
order – causes severe performance degradation of these
quorum protocols. The performance of agreement-based
protocols is not vulnerable to such conflicting writes and
we aim to provide similar robustness in quorum-based
protocols.

We focus on two state-of-the-art quorum-based BFT
RSM protocols: the Q/U protocol [1] and the HQ pro-
tocol [4]. Q/U requires 5f + 1 replicas and completes
requests in a single communication round between client
and replicas when writes do not conflict. HQ requires
3f + 1 replicas and completes requests in two communi-
cation rounds when there are no write conflicts. Detecting
and resolving inconsistent replica states due to conflicting
write operations is a costly operation in both protocols –
Q/U requires exponential back-off from clients, while HQ
invokes an agreement protocol that requires three extra
phases to resolve conflicts. Consequently, performance of
these protocols severely degrades under write contention.

In this paper, we present a simple technique to avoid
write contention altogether from the existing quorum
based BFT RSM protocols. We introduce a pre-serializer

1

node, which sequences client requests before they are
handled by the quorum system. As long as the pre-
serializer remains correct, replicas never experience con-
flicting writes on the same object from multiple clients
and so never have to resolve such write conflicts. A
correct pre-serializer not only avoids conflict resolution
but also enables batching, a powerful optimization where
multiple requests are processed in a single protocol ex-
ecution. A faulty pre-serializer, on the other hand, can
at worst introduce write conflicts in the system – a situ-
ation already handled by the base quorum protocol. To
ensure that the pre-serializer is a non-faulty node most of
the time, we also present a simple mechanism to switch
the pre-serializer if it is suspected faulty by a sufficient
number of other replicas.

To demonstrate the benefits of pre-serialization, we ap-
ply it to the HQ protocol and evaluate it experimentally.
Our results demonstrate that pre-serialization achieves
non-trivial improvements: for example, at f = 3, we
achieve a factor of two improvement in throughput while
reducing the network traffic by a factor of seven when
compared to the original HQ protocol.

The rest of the paper is organized as follows. We start
by giving a brief background on existing BFT RSM pro-
tocols in Section 2. In Section 3, we describe in detail
how pre-serialization works in the context of HQ proto-
col and briefly sketch the design for pre-serialization in
the Q/U protocol. We present experimental results in Sec-
tion 4, discuss related work in Section 5, and conclude in
Section 7.

2 Background

2.1 Q/U

Query/Update or Q/U [1] is an example of a single-round
quorum-based protocol that tolerates up to f faulty repli-
cas within a set of 5f + 1 replicas. Replicas optimisti-
cally execute requests locally without explicitly agree-
ing on a common order. Clients cache replica histories
present in the responses and append them to future re-
quests. When an ordering conflict is detected among
replicas – i.e., replica histories do not match in the re-
sponses – clients notify the replicas of the inconsistency
and drive the system toward a consistent state. Typically,

conflicting requests are aborted and retried using an ex-
ponential back-off mechanism once replicas have become
consistent again.

Q/U requires a significantly lower number of messages
and fewer rounds than PBFT, but can be mired by live-
lock under high-concurrency workloads, where multiple
clients issue requests to the RSM concurrently.

2.2 HQ

To deal with the performance limitations of PBFT and
Q/U, Cowling et al.’s HQ protocol [4] combines the quo-
rum and consensus approaches in an ingenious way. HQ
is a two-round quorum protocol in the absence of conflict-
ing write requests (a common case) and requires 3f + 1
replicas. Replicas optimistically choose an ordering of re-
quest (a grant) and notify the client. Client collect a quo-
rum of 2f + 1 grants and participate in a second round
where they send back the collected grants (a writeback).
Replicas can detect contention by observing the set of
grants in the writeback message. Upon detecting con-
tention, replicas resorts to Byzantine consensus for effi-
cient conflict resolution. The relatively expensive consen-
sus is only used to resolve concurrency conflicts, which
would require exponential back-off in a pure quorum sys-
tem such as Q/U. As a result, HQ improves significantly
upon PBFT in low-concurrency settings, while resolving
concurrency conflicts at a lower expected latency than
Q/U.

HQ’s conflict resolution technique relies on utilizing a
proxy server. The proxy collects conflicting requests op-
portunistically, combines them into a conflict resolution
batch, and submits them to the PBFT module (described
below) for linearization. Once the order of conflicting
requests has been agreed upon, the replicas validate the
conflict batch: they check whether a conflict resolution
was really needed, and whether all conflicting requests are
valid. Then, they either execute the valid batch of conflict-
ing requests in a consistent order, or otherwise reject the
batch, replace the faulty proxy server that produced the
batch via a PBFT view change, and try again. We now
give a very brief overview of the PBFT protocol.

2

2.3 PBFT

The Practical Byzantine Fault Tolerant (PBFT) proto-
col [3] and its derivatives use 3-round Byzantine consen-
sus over 3f + 1 replicas to ensure that all clients’ re-
quests are executed in a consistent order in the face of
up to f replica faults. PBFT requires a quadratic number
of messages in the number of replicas and three rounds
of message exchanges. While practical for small val-
ues of f , this limits scalability to large replica groups.
The message complexity also leads to low throughput in
bandwidth-constrained environments, and causes high re-
quest latency when the network delay among replicas is
high.

3 Pre-serialized HQ (PS-HQ)

We now describe how pre-serialization works in the con-
text of the HQ protocol. Our goal is to ensure that HQ
does not experience write contention and therefore does
not need to pay the price of conflict resolution. To that
end, we interpose a pre-serializer node between the clients
and replicas of the HQ protocol. Figure 1 presents the
HQ protocols and the PS-HQ protocol. HQ completes re-
quests in 4 message delays when there is no contention.
PS-HQ completes requests in 5 message delays (extra
phase due to pre-serialization) when pre-serialization is
correct and irrespective of the write contention in the
workload. We believe that the additional penalty of one
message delay imposed by pre-serialization is easily out-
weighed by the benefits realized in the common case
when the pre-serializer is correct.

Next we present the PS-HQ protocol in detail.

3.1 Design

PS-HQ clients behave as with HQ.
Pre-serialization is done by one of the replicas: at any

time, it is the i-th replica, i ≡ s mod N , where s is the
current sequence number of the PBFT protocol used for
conflict resolution, and N = 3f + 1 is the number of
replicas1.

1In general, pre-serializer could be from the client population, or be
an entirely separate node.

Client

Replicas

Collect Grants Write-back Response

Phase I Phase II

Client

Replicas

Collect Grants Write-back Response

Phase I Phase II

Preserialization

Figure 1: HQ protocol (top) and PS-HQ protocol (be-
low). Note that PS-HQ incurs extra message delay
to send the pre-serialization messages from the pre-
serializer (replica colored blue) to other replicas.

The pre-serializer buffers client requests and submits
them to the HQ replicas, serially, like a regular HQ client.
Once it has received a quorum of 2f+1 acknowledgments
(signed hashes of the request) from distinct HQ replicas,
it can submit the next serialized client request.

Otherwise, PS-HQ replicas behave identically to HQ
replicas with one exception: they do not process regular
clients’ requests immediately, but associate a timer with
each one and wait for the same request to be received
from the pre-serializer. If the request is received in time
from the pre-serializer, the replica cancels the timer, sends
a grant to the client and an acknowledgment to the pre-
serializer. If the timer for a client’s request expires before
that request is received from the pre-serializer, the replica
initiates a pre-serializer change.

A client request that arrives at a replica after it was

3

received from the pre-serializer is ignored. If a replica
received a request different from the request contained
in the pre-serializer message and both are signed by the
client and have the same RID (an RID is assigned by the
client to every request it sends), it generates a grant only
for the pre-serialized request and drops the other request.

Replicas handle pre-serializer changes in the same way
HQ handles conflict resolution. A replica sends a START
message that may contain a conflict certificate (if the
faulty pre-serializer submitted conflicting writes to dif-
ferent replicas) or not (if the pre-serializer suppressed a
client request causing timers to expire). Conflict resolu-
tion eventually results in a PBFT invocation, which in-
crements the PBFT sequence number and resolves any
conflicting writes. Note that incrementing the PBFT se-
quence number changes the pre-serializer. Hence, the cost
of changing the pre-serializer is similar to the cost of re-
solving conflicts in HQ.

3.2 Correctness
A faulty pre-serializer appears to HQ replicas as a faulty
client that submits different requests to different replicas.
As a result, PS-HQ shares HQ’s safety properties, by re-
lying on HQ’s tolerance of an arbitrary number of faulty
clients. This also holds when a faulty pre-serializer col-
ludes with faulty clients.

Moreover, while a faulty pre-serializer may suppress
or delay a correct client’s request or batch of requests,
this behavior eventually results in a pre-serializer change.
Therefore, progress is ensured as long as clients retrans-
mit their requests until they succeed.

Now we argue, informally, that PS-HQ’s performance
is more robust to faulty clients compared to HQ when the
pre-serializer is non-faulty.

A faulty client cannot force PS-HQ into conflict reso-
lution by submitting different requests with the same RID
to different replicas. This is because in PS-HQ, requests
are not given a grant at the replicas until they are pre-
serialized. A non-faulty pre-serializer handles only the
first request that it receives with a given RID from a client.
A non-faulty replica gives a grant only to the request iden-
tified in the pre-serialization message. Recall that a non-
faulty replica drops other requests that have the same RID
and are signed by the same client. Therefore, a faulty
client cannot introduce write conflicts as long as the pre-

serializer is non-faulty. Also, ignoring such requests en-
sures that faulty clients alone cannot cause a pre-serializer
change.

A faulty client may, however, delay writes since PS-HQ
relies on clients to perform the second phase of the write
protocol. In HQ, if replicas receive a new write request
for an object for which there is a pending write (this hap-
pens when a replica is waiting to receive the 2nd phase
message from the client), they send a refusal response to
the new request, prompting the new client to complete the
previous request. We use the same approach to handle
faulty clients in PS-HQ.

3.3 Batching

In the PS-HQ protocol as presented so far, the pre-
serializer forwards every single client request to the HQ
replicas individually. In addition, the existence of a sin-
gle pre-serializer enables batching: instead of sending in-
dividual requests, the pre-serializer can combine multiple
client requests into a single batch, thus amortizing the cost
of generating authenticators and the bandwidth of the au-
thenticators themselves over many requests.

Batching does not affect the structure of the protocol
but only the number of individual messages sent: upon
receiving a batch, replicas create a cumulative grant for
the entire batch and send it to a client chosen determinis-
tically from the batch (e.g., the owner of the first request
in the batch). A non-faulty client creates a write certificate
for the batch and sends it again to the replicas in phase 2.
The replicas then send a reply message for every request
in the batch to the client who issued that request. Note
that replicas create a single grant for the entire batch. As
a result, they save both processing (by computing a single
authenticator rather than one for each included request)
and bandwidth (by sending a single grant rather than one
for each included request) proportional to the batch size.

3.4 Expected Improvements

Preserialization is based on the premise that conflict res-
olution is an inherently expensive task. Preserialization
replaces the cost of conflict resolution with the cost of
interposing a sequencer between clients and replicas that
– if non-faulty – serializes the request stream to remove

4

all sources of write contention. The cost of conflict res-
olution varies among quorum systems; for HQ, it is the
cost of linearizing a conflict resolution request via a PBFT
module, which adds several replica-to-replica communi-
cation rounds, additional authenticator computations, and
some state. In Q/U, it is the latency cost inherent in expo-
nential back-off, as well as the additional bandwidth and
computation for protocol message retransmissions.

The request batching performed by preserialization of-
fers further benefits, since it replaces the costs of com-
puting and transmitting individual authenticators for mul-
tiple requests with those for a single, larger request. In
HQ’s case, the conflict resolution mechanism applies to
multiple (conflicting) requests in a single PBFT invoca-
tion. Therefore, preserialization without batching for HQ
may actually reduce performance under contention, since
it causes every request to go through its own protocol ses-
sion (two rounds of client-replica exchanges), whereas
HQ’s conflict resolution might handle them as part of a
batch.

However, PS-HQ batching goes beyond what HQ’s
conflict resolution batching can accomplish, for two rea-
sons. First, with regards to conflicting requests for the
same object, PS-HQ can get the same batching bene-
fits as HQ’s conflict resolution, but at a much lower
cost: a single grant and write-2 message exchange for
an entire batch, and no additional PBFT protocol invo-
cation over the entire batch. Second, PS-HQ also batches
non-conflicting requests, e.g., requests for disparate ob-
jects. Therefore, PS-HQ improves performance even
when write contention is low but there is a high rate of
requests to different objects.

Overall, at very low contention and in the absence of
sustained load, we expect HQ to be superior to PS-HQ
due to the overhead of preserialization. As sustained load
increases, we expect PS-HQ to be competitive with HQ at
low contention. At high contention PS-HQ should dom-
inate HQ, since PS-HQ’s throughput is not affected by
contention.

In the presence of faults, PS-HQ’s performance should
be roughly similar to HQ. PS-HQ initiates a pre-serializer
change, which itself involves conflict resolution, whereas
HQ simply performs conflict resolution.

In Section 4, we confirm these intuitive performance
benefits of PS-HQ experimentally.

3.5 Pre-serialized Q/U (PS-Q/U)

We present here only an outline of how pre-serialization
works in the Q/U protocol since most of the logic and
correctness arguments are similar to PS-HQ.

We introduce a counter variable in the Q/U replica state
to count the number of invocations of conflict resolution
and denote it by CCR. At each conflict resolution, this
counter is incremented. Since replicas synchronize dur-
ing conflict resolution, CCR is also synchronized. Note
that CCR serves the same role as the sequence number s
maintained by the PBFT module in PS-HQ.

At a given CCR, a replica with id i ≡ CCR mod N
serves the role of the pre-serializer.

The client logic remains unchanged.

Figure 2: Pre-serialization in Q/U protocol.

The pre-serializer serializes requests in a fashion sim-
ilar to PS-HQ. When the pre-serializer is non-faulty, re-
quests complete in three message delays between client
and replicas (shown in Figure 2) compared to two mes-

5

sage delays required by Q/U when there are no conflicts.
We believe that this extra cost due to pre-serialization
is more than offset by the advantages offered by pre-
serialization in the face of high write concurrency and low
fault incidence.

If the pre-serializer is faulty, it can at worst cause
writes to conflict. Since Q/U already handles conflicts (at
the potentially high cost of exponential back-off mecha-
nism), we relegate dealing with faulty pre-serializers to
that mechanism. Also, note that CCR increments during
conflict resolution, so a new pre-serializer is chosen after
every conflict resolution.

The authors of Q/U observed that Q/U exhibits a drop
in throughput as f grows. This is due to the use of authen-
ticators, whose cost of generation and verification grows
linearly with f . Pre-serialization can mitigate some of
these problems via batching – multiple requests are per-
formed at the same logical timestamp. This reduces the
computational load at the pre-serializer and also enables
multiple requests to share the same authenticator, i.e., one
authenticator is generated over a batch of requests.

4 Experimental Evaluation
We evaluate the effectiveness of preserialization by im-
plementing it in the HQ codebase, which was provided to
us by the HQ authors. We are unable to evaluate preseri-
alization with the Q/U protocol since its implementation
was not publicly available at the time of this writing.

In this section, we show that in the absence of faults and
as write contention increases, PS-HQ maintains a roughly
constant (1) high throughput, (2) low bandwidth usage,
and (3) low latency. In contrast, HQ’s throughput de-
creases, its bandwidth use increases, and its request la-
tency increases as contention grows.

We used Emulab for our experiments. We ran exper-
iments on 46 “pc3000” machines, each having a 3 GHz
processor with 2 GBytes of RAM and connected via a
1000 Mbps router. Nodes were connected in a virtual
LAN. We ran server code on 4 to 16 machines (for the
number of tolerated faults ranging from f = 1 to f = 5).
Four clients each were running on 30 machines with very
low utilization, for a total of 120 clients.

For a fair comparison, we used the same synthetic
workload as that used in the original HQ study. Each

client has a private object (which no other client ever
writes and, as a result, never experiences any write con-
tention). There is also a single object globally shared by
all clients. Each client has only one outstanding request at
any given time; when it receives a response to its previous
request, it picks an object (its private object or the shared
one) and it generates a new request for it. The choice
of whether to send a request to the shared or the private
object is governed by a contention parameter: the prob-
ability that a client will choose the shared object when
sending a new request. When that parameter is set to 0,
no request is sent to the shared object and there is no write
contention. When that parameter is set to 1, all requests
are sent to the shared object, resulting in 100% contention.

For each combination of replica group size (4, 7, 10)
and contention parameter setting (from 0 to 1), we show
the throughput in requests per second (computed by tim-
ing the execution of 100, 000 requests), the bandwidth
used in KBytes per request (computed by counting all
bytes sent and dividing by the number of requests), and
the request latency in seconds (by measuring the aver-
age amount of time it takes for a request to receive a re-
sponse).

Figure 3 compares PS-HQ to HQ.
At low contention, the throughput improvement is

moderate, primarily thanks to multi-object batching. At
high contention, the improvement is more pronounced
and grows as the size of the replica group grows, from
a little under a factor of two for group size 4 to almost a
factor of 2.5 for group size 10.

HQ’s write throughput is always inferior compared to
PS-HQ’s.

5 Related work
Our work falls in the space of optimization techniques to
make Byzantine fault tolerant protocols more practical.

Castro and Liskov [3] presented PBFT, a BFT algo-
rithm that is suitable for Internet applications. Even
though PBFT is more efficient than earlier proposals, its
authors recognized the high per-request overhead and in-
troduced three powerful optimizations: batching, pipelin-
ing, and tentative execution. Unfortunately, as f in-
creases, the benefits of these optimizations can not over-
come the fundamental bottleneck of PBFT: a quadratic

6

 0

 2000

 4000

 6000

 8000

 10000

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

T
hr

ou
gh

pu
t

(r
eq

ue
st

s/
s)

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Contention

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0

 0.01

 0.02

 0.03

 0.04

 0.05

La
te

nc
y

(s
)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

T
ra

ffi
c

(K
B

/r
eq

)

f = 1

HQ
PS-HQ

f = 2

f = 3

Figure 3: Throughput (bottom) measured in completed re-
quests per second, per request latency (middle) measured
in seconds, and traffic (top) measured in KBytes per re-
quest. Contention is ranging from 0 to 100% on the x
axes. f is ranging from 1 to 3 from left column of graphs
to right, corresponding to replica group sizes of 4, 7, and
10, respectively.

number of message exchanges in the number of replicas
to reach agreement.

Yin et al. [10] made a clever observation that by sep-
arating the agreement phase from the execution phase of
the PBFT protocol, the hardware cost of replication can be
reduced. This separation allows different machines for the
agreement and execution phases, allowing different ser-
vices to share the same agreement replicas. At the same
time, only 2f +1 replicas are required (f fewer than with
PBFT) for the execution phase once requests are ordered
by the agreement replicas.

Several optimizations have been proposed that attempt
to reduce the cost of consensus when faults are rare. Fast-
Paxos [2] can deliver consensus in two communication
rounds when there are no faults and the network is syn-
chronous, assuming crash-only faults. Under no faults
and perfect synchrony, Kursawe [6] reduced the cost of

Byzantine consensus by completing in two rounds and
requiring only 3f + 1 replicas. In less favorable set-
tings, Kursawe’s protocol falls back to the traditional
three round protocol. Martin and Alvisi [8] proposed a
Byzantine consensus protocol that requires 5f + 1 repli-
cas and always completes in two rounds except in the case
where the leader is faulty. Our technique is also based on
the idea of optimizing the fault-free case but we apply it
in the context of quorum-based BFT protocols to avoid
conflicting writes completely.

Li and Mazières [7] extend the fault tolerance of BFT
protocols by providing fork? consistency (a form of con-
sistency weaker than linearizability) when there are more
than f faults in the system. Rodrigues et al. [9] also im-
prove the fault scalability of BFT protocols without re-
laxing the consistency, but by identifying a fundamental
tradeoff between safety and liveness; for example, they
show that the PBFT protocol can be configured to be safe
even if 2/3-rds of the replicas are faulty, but loses liveness
as soon as 1/6-th of the replicas are faulty.

More recently, Kotla et al. present Zyzzyva [5], a PBFT
variant, that exploits speculation extensively to reduce the
overhead and latency of BFT replication. In failure-free
and synchronous executions, Zyzzyva is extremely effi-
cient since requests complete in 3 message delays. Un-
fortunately, under slightly worse conditions such as a sin-
gle faulty replica or network jitter, Zyzzyva requires 5
message delays which is similar to our PS-HQ protocol.
To avoid the additional message delays, the authors pro-
pose Zyzzyva5, which requires 5f + 1 replicas and com-
pletes requests in 3 message delays even if there are f
faults in the replicas (except the primary). Interestingly,
Zyzzyva5 appears similar to PS-Q/U with PS-Q/U likely
to be more robust to faulty clients since Q/U does not have
a second phase. Finally, Zyzzyva’s view change protocol
is more heavy-weight and complex compared to PBFT’s
view change protocol, which is used in PS-HQ. PS-Q/U
does not have a view change protocol.

6 Acknowledgment
We thank the authors of HQ, especially James Cowling,
for sharing the HQ codebase with us and answering our
queries regarding both the HQ protocol as well as the
codebase. We also thank Lorenzo Alvisi for his helpful

7

comments.

7 Conclusion
We have presented a simple yet powerful optimization
technique for state-of-the-art quorum-based BFT proto-
cols. Results show that when faults are rare, our opti-
mization delivers significant benefits.

References
[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson,

M. Reiter, and J. J. Wylie. Fault-scalable Byzan-
tine fault-tolerant services. In Proceedings of ACM
Symposium on Operating System Principles (SOSP),
Brighton, UK, Oct. 2005.

[2] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui.
Reconstructing Paxos. In SIGACT News, 2003.

[3] M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance. In Proceedings of USENIX Operating
System Design and Implementation (OSDI), New
Orleans, USA, Feb. 1999.

[4] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ Replication: A Hybird Quorum Proto-
col for Byzantine Fault Tolerance. In Proceedings of
USENIX Operating System Design and Implementa-
tion (OSDI), Seattle, USA, Nov. 2006.

[5] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative Byzantine Fault
Tolerance. In Proceedings of ACM Symposium on
Operating System Principles (SOSP), WA, USA,
Oct. 2007.

[6] K. Kursawe. Optimistic Byzantine Agreement. In
Proceedings of IEEE Symposium on Reliable Dis-
tributed Systems (SRDS), Suita, Japan, Oct. 2002.

[7] J. Li and D. Mazières. Beyond One-third Faulty
Replicas in Byzantine Fault Tolerant Systems. In
Proceedings of USENIX Networked Systems Design
and Implementation (NSDI), Boston, MA, USA,
Apr. 2007.

[8] J. Martin and L. Alvisi. Fast Byzantine consensus.
In Proceedings of International Conference on De-
pendable Systems and Networks (DSN), Yokohama,
Japan, June 2005.

[9] R. Rodrigues, P. Kouznetsov, and B. Bhattachar-
jee. Large-Scale Byzantine Fault Tolerance: Safe
but Not Always Live. In Proceedings of Hot Top-
ics in Dependability (HotDep), Edinburgh, UK, June
2007.

[10] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution
for byzantine fault tolerant services. In Proceedings
of ACM Symposium on Operating System Principles
(SOSP), pages 253–267, Bolton Landing, NY, USA,
Oct. 2003.

8

