
The Case for Byzantine Fault Detection

Andreas Haeberlen
Rice University, MPI-SWS

Petr Kouznetsov
MPI-SWS

Peter Druschel
MPI-SWS

Technical Report MPI-SWS-2006-001

1 Introduction

Distributed systems are subject to a variety of failures
and attacks. In this paper, we consider general (Byzan-
tine) failures [11], in which a failed node may exhibit
arbitrary behavior. In particular, a failed node may cor-
rupt its local state, send random messages, or even send
specific messages aimed at subverting the system. Many
security attacks can be modeled as Byzantine failures,
such as censorship, freeloading, misrouting, or data cor-
ruption.

Systems can be protected with Byzantine fault toler-
ance (BFT) techniques, which canmaska bounded num-
ber of Byzantine failures, e.g. using state machine repli-
cation [4]. BFT is a very powerful technique, but it has
its costs. In a practical system that needs to tolerate up
to f concurrent Byzantine failures, BFT cannot be im-
plemented with less than3f + 1 replicas [3]. More-
over, BFT scales poorly to large replica groups; as more
servers are added, the throughput of the system may ac-
tually decrease [7].

In this paper, we explore an alternative approach that
aims atdetectingrather than masking faulty behavior.
In this approach, the system does not make any attempt
to hide the symptoms of Byzantine faults. Rather, each
node is equipped with a detector that monitors the other
nodes for signs of faulty behavior. If the detector de-
termines that another node has become faulty, it notifies
the local node, which can then take appropriate action.
For example, it can cease to communicate with the faulty
node; once all correct nodes have followed suit, the faulty
node is isolated and the fault is contained.

Specifically, we consider detection systems that are
based onaccountability[15]. With accountability, each
action is associated with the identity of the node that has
taken it, which allows the system to gather irrefutableev-
idenceof faulty behavior. This has two important advan-
tages: First, nodes can use the evidence to convince other
nodes that a fault has occurred. Second, the evidence en-

ables the system to resolve he-said-she-said situations in
which two nodes accuse each other of having failed.

Our goals in this paper are threefold: First, we exam-
ine the trade-offs between fault detection and traditional
BFT. Second, we give a precise definition of the class of
Byzantine faults that can be detected with this approach.
Finally, we give a brief sketch of a practical system that
implements such a detector.

1.1 The case for fault detection

Clearly, techniques that mask Byzantine failures are easy
to use because, unlike fault detection systems, they pro-
vide the application designer with the abstraction of a
system in which failures simply do not occur. So what
reasons are there to opt for fault detection?

You need fewer machines. If a system can suffer
up tof concurrent failures, BFT cannot be implemented
with less than3f + 1 machines. Detection, on the other
hand, can be accomplished even with a single correct ma-
chine; hence, it requires onlyf + 1 machines1. The im-
portance of this result is not only in the reduced hardware
requirement. BFT is useful only if node failures are not
correlated. Thus, all machines should ideally run dif-
ferent operating systems, different application software,
have separate power supplies, etc., to ensure they do not
have any common vulnerabilities. This is easier to ac-
complish for a smaller number of machines.

You can tolerate more failures. With BFT, thefrac-
tion of machines in the system that are faulty must be be-
low 33% at all times. In detection-based systems, faults
can be detected as long as there is one correct node in the
system, irrespective of the number of faulty nodes. Thus,
it can be used in environments where a high fraction of
the nodes (say,90%) can fail simultaneously.

You can provision for the common case. In a BFT
system, all replicas must process each request promptly,

1This does not contradict the impossibility results for agreement [3]
because detection systems do not guarantee safety.

1

since the client cannot make progress before most of
them have responded. In a detection-based system, how-
ever, asingle replica can process each request and re-
spond immediately; the other replicas can later check the
response during a period of light load. Hence, a BFT
system must be provisioned such that each machine can
handle the peak load, while in a detection system, each
machine must merely be able to handle theaverageload.

Detection is cheaper. The reason is that asynchronous
checking avoids the consensus required in state-machine
replication, and it enables the aggregation of messages,
state and processing associated with detection. Also,
there is no need for the replicas to be strongly consistent,
which makes it much easier to handle view changes.

1.2 Uses of fault detectors

We consider a fully distributed detection system where
every node is equipped with its own detector, which
watches for faults on the other nodes. Once this detec-
tor reports a fault, the local node can respond in various
ways. As a first step, it can stop communicating with the
faulty node. The node can then distribute the evidence
in its possession to other nodes, so they can also respond
and thus isolate the faulty node. Finally, the node can ini-
tiate recovery. For example, a storage system can create
additional replicas of all objects stored on the faulty node
and/or notify a human operator, who can then repair the
faulty node.

The mere presence of a detection system can reduce
the likelihood of certain faults. For example, it can dis-
courage attackers and freeloaders by creating a disincen-
tive to cheating, since a faulty node risks isolation and
expulsion from the system. Furthermore, if the system
maintains a binding from node identifiers to real-world
principals, then even the owner of a faulty node could be
exposed and held legally responsible.

Fault detection also has its limits. Detection is not
sufficient for failures that have irreversible and serious
effects, such as deleting all copies of an important doc-
ument. However, detection and accountability offers an
efficient and scalable alternative to BFT for a large class
of real-world failures, including freeloading, censorship,
and denial-of-service. Moreover, we believe that detec-
tion can be used in combination with BFT (e.g. to prevent
BFT from reaching its failure bound by ejecting faulty
nodes), which would allow the design of dependable, yet
scalable distributed systems. The wide-spread reliance
on accountability in human society, both to discourage
unwanted behavior and to encourage compliance with
the law, provides further justification for the approach.

i

Network

Application

send(m)

suspected(j)
exposed(j)
trusted(j)

recv(m)

State machine A

I/O
specific
app−

i Detector module B

Figure 1: Information flow between application, proto-
col, and detector module on nodei

2 Detectable failures

A perfect detection system would immediately detect any
Byzantine fault. The power of a practical, efficient de-
tection system, however, is necessarily limited. In this
paper, we will assume that the detector on a correct node
can observe all messages sent and received by that node.
This clearly means that some Byzantine faults are not ob-
servable and thereforecannotbe detected. For example,
a faulty storage node might report that it is out of disk
space, which cannot be verified without knowing the ac-
tual state of its disks.

In the following, we formally define the class of
Byzantine faults that can be detected under this assump-
tion. We distinguish two types of faults. Informally, a
nodei is detectably faultyif the behavior it exposes to
correct nodes could not be observed ifi were correct,
anddetectably ignorantif i ignores a message sent toi

by a correct node. For example, if a correct node requests
some service thati is supposed to grant,i is detectably
faulty if it denies the request, and detectably ignorant if
it pretends that it has not received the request at all.

2.1 System model

We consider a setΠ of nodes. Every nodei is modeled as
a state machineAi and a detector moduleBi (Figure 1).
Informally, we say that a nodei is correct if it respects
the specifications of bothAi andBi. Otherwise, the node
is faulty.

Nodes communicate with each other through message
passing. We assume that messages are uniquely identi-
fied. For a messagem, let sender(m) andreceiver(m)
denote the sender and the receiver ofm, respectively.
For the moment, we do not put any restrictions on local
processing time and communication delays. However,
we assume that, after some number of retransmissions,
a message sent from a correct node to a correct node is
eventually received.

An event is either sendi(m) ∈ Oi, where i =
sender(m), or receivej(m) ∈ Ij , where j =

2

receiver(m), or an application-specific input or output.
An executionE is a sequence of events such that in

E, eachm is sent and received at most once, and each
receivei(m) is preceded by the correspondingsendj(m).
We distinguish events associated with the state machine
Ai and events associated with the detector moduleBi.
E|Ai denotes the subsequence ofE that consists of all
events associated withAi in E, andE|Bi denotes the
subsequence ofE that consists of all events associated
with Bi in E. We say that a nodei is correct in E if (1)
E|Ai (respectively,E|Bi) conformsto Ai (respectively,
Bi), i.e., if the sequence of outputs produced inE|Ai

(E|Bi) is legal, givenAi (Bi) and the sequence of inputs
in E|Ai (E|Bi), and (2) ifE is infinite, then bothE|Ai

andE|Bi are also infinite. Otherwise we say thati is
faulty in E.

2.2 Detectable faultiness and ignorance

We define ahistory of a nodei as a sequence of events
of Ai. A history h of a nodei is valid if it con-
forms to Ai, i.e. if, given the sequence of incoming
messages and application-specific inputs inh, Ai could
have produced the sequence of outgoing messages and
application-specific outputs inh. A pair (h1, h2) of his-
tories of i is consistentif h1 is a prefix ofh2, or vice
versa. If i is a correct node, one trivial example of a
valid history isE|Ai.

Let M(E) denote the set of messages received by the
nodes in an executionE. We assume that there exists a
history mapϕ that associates every messagem ∈ M(E)
with a history ofsender(m). For a correct node,ϕ(m)
is the prefix of the local executionE|sender(m) up to
and includingsend(m). Thus, for any messagem sent
by a correct node,ϕ(m) is valid, and for every pair of
messagesm andm′ sent by a correct node,ϕ(m) and
ϕ(m′) are consistent.

We say that a messagem is observable inE if there
exists a correct nodei and a sequence of messages
m1, . . . , mk such that

(i) m1 = m,

(ii) receive(mk) belongs toE|Ai,

(iii) for all j = 2, . . . , k: receive(mj−1) belongs to
ϕ(mj).

In other words,m is observable if it causally precedes
at least one event on a correct node.

We say that a nodei is detectably faultywith respect
to a messagem in an executionE if m that was sent by
i, is observable inE, and satisfies one of the following
properties:

(1) ϕ(m) is not valid (fori)

(2) There exists a messagem′ that was also sent byi
and is observable inE, such thatϕ(m) is inconsis-
tent withϕ(m′)

The set of nodes causally affected bym andm′ (if m′

exists) are calledaccomplicesof i with respect tom.
We say that a nodei is detectably ignorantin E if i is

not detectably faulty inE and there exists a messagem

sent toi by a correct node, such that, for all observable
messagesm′ sent byi, receivei(m) does not appear in
ϕ(m′).

2.3 Guarantees

When the detector moduleBi on a correct nodei has
seen evidence of faulty behavior on another nodej, it
sends afailure indicationto its local application process.
We define three different types of indications:trustedj ,
suspectedj andexposedj . Intuitively, if the moduleBi

outputssuspectedj, there is evidence thatj is ignoring
certain inputs, e.g. by refusing to accept a service request
from a correct node. If it outputsexposedj , there exists
a proof thatj is faulty, i.e. that it has deviated from the
specification of its state machineAj . Finally,Bi outputs
trustedj while none of the other conditions hold.

We can use a definition similar to that of [5, 9] to de-
scribe these properties. Thus, the detection system guar-
antees that the following properties hold in every execu-
tion:

• Eventual strong completeness: (1) Eventually, ev-
ery detectably ignorant node is suspected forever by
every correct node, and (2) if a nodei is detectably
faulty with respect to a messagem, then eventually,
some faulty accomplice ofi (with respect tom) is
exposed or forever suspected by every correct node.

• Eventual strong accuracy: (1) No correct node is
forever suspected by a correct node, and (2) no cor-
rect node is ever exposed by a correct node.

Note that the detector need not guarantee that a cor-
rect node is always trusted by another correct node; it
can jump fromtrusted to suspectedand back, e.g. due
to long message delays. Further, a detectably faulty node
might never be detected. However, if a node is detectably
faulty, thensomefaulty node will eventually be exposed
or suspected forever. Thus, if there are only finitely many
faulty nodes in the system, correct nodes can be affected
by their behavior only finitely long.

3 A practical detector for Byzantine faults

To show that detection systems are practical, we now
briefly sketch the design of PeerReview, a system that

3

can provide the guarantees stated in Section 2.3. A proof
can be found in Appendix A. We have implemented
PeerReview and initial results suggest that it is practical
and efficient. An experimental evaluation is the subject
of a future, full paper.

3.1 Assumptions and goals

For PeerReview, we assume that the system can be mod-
eled as described in Section 2.1, with two additional as-
sumptions: First, that the protocol isdeterministic, i.e.
produces the same outputs given the same sequence of
inputs. This is a fairly common assumption in state ma-
chine replication [4, 10]. Second, that nodes havestrong
identitiesand a keypair that can be used to sign messages.
This can be accomplished, for instance, by giving each
node an identity certificate, signed by a certification au-
thority, that ties its public key to its node identifier.

We also make the common assumption that the at-
tacker does not have the ability to break cryptographic
signatures. Other than that, the Byzantine nodes may be-
have arbitrarily and/or collude with each other.

3.2 Secure histories and commitment

Each node is required to keep a log of all the inputs and
outputs of its local state machineAi. The log is orga-
nized as a hash chain, similar to a secure history [13],
such that the top-level hash covers the contents of the en-
tire log. Furthermore, each node must frequentlycommit
to the contents of its log by publishing anauthenticator,
i.e. a signed copy of its top-level hash value. This makes
the logtamper-evidentand ensures that nodes cannot re-
vise history [13].

Nodes must sign all messages they send, and acknowl-
edge all messages they receive. If a message is not ac-
knowledged after several retries, it is broadcast to the
other nodes, who then challenge the node to accept the
message. This ensures that a node is suspected by all
correct nodes if it refuses to accept a message.

Each message or acknowledgmentm contains an au-
thenticator, as well as a short proof thatsend(m) or
receive(m) was the top-level entry of the correspond-
ing log. The recipient extracts the authenticators and,
once in a while, forwards them to the other nodes. Thus,
all nodes are eventually made aware of all authenticators
that have been sent to a correct node.

3.3 Auditing

Each nodei is periodicallyauditedby every other node2.
During an audit, the auditorj first asksi for a signed log
segment that covers all entries since the last audit.j then
validates the log against the most current authenticator
it has obtained fori. If i refuses to comply,j begins to
suspecti.

Next, j performs aconsistency checkto see if the log
matches all the recent authenticators it has obtained for
i. If this fails, i has forked its log or is keeping multiple
copies, andj obtains a signed confession. The evidence
is then made available to other nodes, who can thus mark
i as exposed.

In a third step,j extracts all authenticators from the
log segment and forwards them to the other nodes. This
ensures that, even ifi is faulty and has not performed
this step earlier, the other nodes will eventually be aware
of all relevant authenticators. This step requiresO(N2)
messages; however, these messages are small and can be
heavily aggregated.

Finally, j performs aconformance check. It instanti-
ates a local copy of the state machineAi and initializes
it with a recent checkpoint from the log. Then it replays
all the inputs from the log and checks whether the corre-
sponding outputs match the ones in the log. Thus,j can
check protocol conformance without an explicit protocol
specification. If it detects a divergence, it has obtained a
signed confession and can thus exposei.

3.4 Checking evidence

If a nodej detects a fault on a nodei, it obtains one of
two types of evidence. Ifi is detectably faulty,j obtains
either a) an authenticator and a log, both of which are
signed but do not match, or b) a signed log segment that
fails the conformance check. Both constitute a signed
confession. Ifi is detectably ignorant,j obtains a chal-
lenge (e.g. a request for a certain log segment) thati can-
not answer, except by providing a signed confession.

Both types of evidence can be distributed to the other
nodes, who can verify them independently, either by re-
peating the checks performed byj (in case of a signed
confession) or by contactingi and checking its response
(in case of a challenge). PeerReview ensures that this
check will always fail for a correct node, since they never
generate signed confessions and can respond to any chal-
lenge.

The output of the PeerReview failure detector on a
given node is reliable if, and only if, the node has a valid
copy of the state machine to be run by all the nodes in

2We assume here that there are exactlyf + 1 nodes in the system.
In larger systems, it is sufficient thatf + 1 other nodes audit a given
node, but we omit the details due to lack of space.

4

the system. A node can ensure this, for instance, by ob-
taining a signed binary program from a trusted authority.

To bound the space required for logs, nodes may be
allowed to discard old log entries, e.g. after a month. In
this case, older evidence can no longer be verified and
must be discarded as well, which eventually allows faulty
nodes to return to the system. This is acceptable, as long
as the system has ample time to respond to the failure
and initiate repair.

3.5 Discussion

PeerReview provides the benefits of detection we out-
lined in Section 1.1. Even a single correct node can,
through auditing, detect and obtain evidence of any ob-
servable faults, and it can take appropriate action. Audit-
ing can be performed asynchronously, so the nodes can
defer the corresponding overhead to periods of light load.
It requires comparatively few messages: With a failure
bound off nodes, Castro and Liskov’s BFT protocol [4]
requires18f2+9f +2 messages per request, while Peer-
Review uses onlyf2 + 3f + 2. Moreover, most of these
messages can be aggregated.

4 Related work

Our concept of a detection system is based on the failure
detectors by Chandra and Toueg [5]. These were defined
for crash failures, but Malkhi and Reiter [12] later ex-
tended them to the Byzantine failure model. Kihlstrom
et al. [9] have introduced several classes of failure detec-
tors that exposedetectableByzantine failures. However,
they consider classes of algorithms in which all messages
are broadcast, and in which processes know when to ex-
pect messages from other processes. PeerReview does
not require these assumptions.

State machine replication [10, 14] is a classical tech-
nique for masking a limited number of Byzantine faults.
Today’s state-of-the-art BFT techniques, e.g. [4], are
based on this idea. The BAR model [1] combines this
approach with a system structure that causes the system
to operate in a Nash equilibrium. Thus, BAR can addi-
tionally tolerate an unbounded number of rational nodes
that are willing to deviate from the protocol in order to
increase their own utility. Although both techniques are
related to detection systems, neither can identify faulty
nodes, and both require more resources.

Alvisi et al. [2] introduced a technique that moni-
tors quorum systems and raises an alarm if the failure
assumptions are about to be violated. This technique
is probabilistic and, unlike PeerReview, cannot identify
which nodes are faulty.

Intrusion detection systems [6] can detect certain types
of protocol violations; however, unlike PeerReview, the

heuristics used in IDS tend to produce either false posi-
tives, false negatives, or both. Reputation systems such
as EigenTrust [8] can be used against Byzantine failures,
but, unlike PeerReview, they cannot prevent a coalition
of malicious nodes from denouncing a correct node. Fi-
nally, trusted computing platforms like TCG/Palladium
can detect failures that involve software modifications,
but require special hardware and force users to give up
some control over their own equipment. PeerReview
works on commodity hardware and merely checks pro-
tocol conformance.

5 Conclusion and future work

In this paper, we have discussed an alternative approach
to handling Byzantine faults, in which the system does
not mask faults but rather detects and responds to them.
We have formally specified the class of faults that can
be detected with this approach, and we have sketched
the design of a practical system that implements it. To
our knowledge, this is the first practical, general-purpose
algorithm for detecting Byzantine faults.

We believe that this work opens up a new and inter-
esting direction for future research. Detection can be
used to protect a much wider range of systems against
Byzantine faults, especially where deploying BFT is in-
feasible or prohibitively expensive. For example, large-
scale distributed systems have long been suffering from
freeloading and various attacks. Detection could provide
accountability and thus an inexpensive yet highly effec-
tive defense.

Also, we believe that further research in detection sys-
tems will yield a variety of new detectors with interesting
tradeoffs. For example, more powerful detectors could
be constructed by adding more sensors, such as attesta-
tion, and hybrids between detection and BFT could allow
more fine-grained tradeoffs between protection and over-
head.

References
[1] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and

C. Porth. BAR fault tolerance for cooperative services. InPro-
ceedings of SOSP’05, Oct 2005.

[2] L. Alvisi, D. Malkhi, E. Pierce, and M. Reiter. Fault detection
for Byzantine quorum systems. InProceedings of the 7th IFIP
International Working Conference on Dependable Computingfor
Critical Applications (DCCA-7), pages 357–371, Jan 1999.

[3] G. Bracha and S. Toueg. Asynchronous consensus and broadcast
protocols.Journal of the ACM, 32(4), 1995.

[4] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In
Proceedings of OSDI’99, pages 173–186, 1999.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectorsfor re-
liable distributed systems.Journal of the ACM, 43(2):225–267,
March 1996.

[6] D. E. Denning. An intrusion-detection model.IEEE Transactions
on Software Engineering, 13(2):222–232, 1987.

[7] J. R. Douceur and J. Howell. Byzantine fault isolation inthe
Farsite distributed file system. InProc. of IPTPS’06, Feb 2006.

5

[8] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigen-
Trust algorithm for reputation management in p2p networks.In
Proc. 12th International WWW Conference, May 2003.

[9] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Byzan-
tine fault detectors for solving consensus.The Computer Journal,
46(1):16–35, 2003.

[10] L. Lamport. Using time instead of timeout for fault-tolerant dis-
tributed systems.ACM Trans. Prog. Lang. Syst., 6(2):254–280,
1984.

[11] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals
problem.ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[12] D. Malkhi and M. K. Reiter. Unreliable intrusion detection in
distributed computations. InCSFW, pages 116–125, 1997.

[13] P. Maniatis and M. Baker. Secure history preservation through
timeline entanglement. InProceedings of the 11th USENIX Se-
curity Symposium, San Francisco, CA, Jan 2002.

[14] F. B. Schneider. Implementing fault-tolerant services using the
state machine approach: a tutorial.ACM Computing Surveys,
22(4):299–319, 1990.

[15] A. R. Yumerefendi and J. S. Chase. The role of accountability in
dependable distributed systems. InProceedings of the 1st Work-
shop on Hot Topics in System Dependability, Jun 2005.

A Proof

Our goal is to prove that PeerReview has the properties
defined in Section 2.3 of this paper, namely:

• Eventual strong completeness: (1) Eventually, ev-
ery detectably ignorant node is suspected forever by
every correct node, and (2) if a nodei is detectably
faulty with respect to a messagem, then eventually,
some faulty accomplice ofi (with respect tom) is
exposed or forever suspected by every correct node.

• Eventual strong accuracy: (1) No correct node is
forever suspected by a correct node, and (2) no cor-
rect node is ever exposed by a correct node.

We begin by giving some additional details of the
PeerReview algorithm in Section A.1. Then we prove
each of the above four claims in Sections A.2 and A.3.

A.1 Validating evidence

In the context of PeerReview,evidenceis a piece of
data that supports a statement about the behavior of a
particular node. There are three different kinds of evi-
dence for a nodei. A challengechal(x) states that
i has refused to respond to requestx and therefore may
be detectably faulty or detectably ignorant. Aresponse
resp(x) states thati has in fact responded to request
x and thus refutes the corresponding challenge. Finally,
a proof proof(x) states thati is detectably faulty. A
proof also includes some information about the nature of
the fault.

A faulty node could try to incriminate a correct node
by forging evidence. Therefore, every node must estab-
lish that the evidence isvalid before using it. A list of

all types of evidence about a nodei, including the condi-
tions under which they are valid, is given below:

• chal(audit,ai,x,ai,y) is evidence that nodei
is refusing to return the log segment{ex, . . . , ey}.
The challenge is valid iff bothai,x andai,y are au-
thenticators signed byi, andy > x.

• resp(audit,ai,x,ai,y,L) shows that i has
properly responded to the challenge above. The
response is valid iffchal(audit,ai,x,ai,y) is
valid, L = {ex, . . . , ey} is a well-formed log seg-
ment signed byi, and the hashes inai,x andai,y

match those of the corresponding entries inL.

• chal(send,m) is evidence thati is refusing to
accept a messagem. The challenge is valid iff
receiver(m) = i.

• resp(send,m,ai,x−1,ai,x) shows thati has in
fact accepted the messagem. The response is valid
iff chal(send,m) is valid, bothai,x−1 andai,x

are signed byi, and ai,x validates3 a log entry
sendi(ack(m)).

• proof(inconsistent,ai,x,L) shows thati
is maintaining several inconsistent histories. The
proof is valid iff L is signed byi and contains an
entryex that has the same sequence number asai,x,
but a different hash.

• proof(invalid,c,L) shows thati’s history
does not conform to its state machineAi. The proof
is valid iff L is signed byi, c matches the first check-
point in L, andL fails the conformance check for
Ai.

A piece of evidence isinvalid if it is not valid accord-
ing to these rules. Invalid evidence is not considered fur-
ther by PeerReview.

Each nodej maintains anevidence setεij for every
other nodei. For simplicity, we will assume that ifj
andk are correct nodes, thenεij andεik are eventually
consistent, so we can treat them as a single setεi. In
practice, this can be achieved e.g. by allowing correct
nodes to gossip about evidence.

To save space, nodes immediately discard invalid evi-
dence. Also, ifεi contains both a valid challengec and a
matching, valid responser(c), the nodes may eventually
discard both.

A nodej generates failure indications for another node
i as follows: If εij contains a valid challenge but no
matching, valid response, thenj outputssuspectedi. If
εij contains a valid proof, thenj outputsexposedi. In
all other cases,j outputstrustedi.

3To check this, the previous hashhx−1 is required, which can be
taken fromai,x−1.

6

A.2 Eventual strong completeness

Theorem 1 Eventually, every detectably ignorant node
is suspected forever by every correct node.

Proof: Assume the opposite, i.e. there is a detectably ig-
norant nodei and a correct nodek such that, for every
time t, there is another timet′ > t at whichk does not
suspecti. Sincei is detectably ignorant, we know that it
is not detectably faulty, and that there exists some mes-
sagem that a correct nodej has sent to it, buti has never
sent another messagem′ such thatreceivei(m) appears
in ϕ(m′).

Since acknowledgments are mandatory,j must have
resentm several times, then it must eventually have
given up and added a challengechal(send,m) to
εi, so eventually all correct nodes must have started
suspectingi. Let t1 be the timek is first notified
of the challenge. By our assumption, we know that
there is a timet2 > t1 at whichk does not suspecti.
But this is only possible if the challenge has been re-
futed becauseresp(send,m,ai,x−1,ai,x) has been
added toεi, and becauseai,x validates a log entry
sendi(ack(m)). By definition,i is not detectably faulty,
so receivei(m) must have precededsendi(ack(m)) in
ϕ(ack(m)), which means thati cannot be detectably ig-
norant. This is a contradiction. 2

The following discussion is related to a mechanism
described in Section 3.2. Recall that nodes commit to
the contents of their logs by publishing authenticators, or
signed hashes of their logs. We say that a nodej is no-
tified of a historyϕ(m) of another nodei if it receives
an authenticatorai,x for a log that corresponds toϕ(m).
The authenticator allowsj to obtainϕ(m) from i, which
j can then validate against the hash value in the authen-
ticator. If i does not comply,j can useai,x in anaudit
challenge and thus cause all correct nodes to suspecti.

As described in Section 3.3, the notification does not
have to be performed byi itself. Since an authenticator
is included with each log entryreceivei(m), other nodes
can extract the authenticators during audits and then per-
form the notification oni’s behalf.

Lemma 1 If a messagem is observable by a correct
nodec via a chain of messagesm1, . . . , mk, then either
each correct node is notified ofϕ(mx) for all 1 ≤ x ≤ k,
or somesender(mx) is exposed or forever suspected by
all correct nodes.

Proof: Note that, by the definition of observability,
m1 = m, receiver(mk) = c, and for all2 ≤ j ≤ k,
receive(mj−1) belongs toϕ(mj).

We begin by observing that, sincec is correct, it will
certainly notify all other nodes ofϕ(mk). Thus, it is

sufficient if we can show that, if all nodes are notified of
ϕ(mx) (for somex > 1), then all nodes are also notified
of ϕ(mx−1), orsender(mx) is either exposed or forever
suspected.

If sender(mx) is exposed or forever suspected, the
claim follows immediately. Otherwise, it must have fully
cooperated with all correct nodes. If it had refused to
answer an audit, anaudit challenge would eventually
have been added to its evidence set, and it would have
been suspected forever by all correct nodes. Moreover,
we know that each correct node must have seen avalid
log; otherwise that node would have added aninvalid
proof of misbehavior the evidence set, andsender(mx)
would have been exposed.

Let hx be the history of sender(mx) as ob-
served by some correct nodecx. We know that
ϕ(mx) ends with an entrysendreceiver(mx)(mx)
(otherwisereceiver(mx) would never have accepted
mx). Therefore, we know thathx must also contain
sendreceiver(mx)(mx), because otherwisecx would have
added aninconsistent proof of misbehavior to its
evidence set, andsender(mx) would have been exposed.
But if hx containssendreceiver(mx)(mx), it must also
contain an entryreceive(mx−1) (if this was not the case,
mk would not be causally connected tomk−1). When
auditing this entry,cx extractsϕ(mx−1) and notifies all
the other nodes.

The claim follows by reverse induction overx. 2

Theorem 2 If a nodei is detectably faulty with respect
to some messagem, then eventually, eitheri itself or
some faulty accomplice ofi with respect tom is exposed
or forever suspected by every correct node.

Proof: Assume the contrary, i.e. that there is a nodei that
is detectably faulty with respect to some messagem, but
neitheri nor any of its faulty accomplices with respect to
m is exposed or forever suspected by some correct node
j. Since correct nodes are not exposed or forever sus-
pected under any circumstances (see Section A.3), it fol-
lows thatno node along the path of causality is exposed
or forever suspected.

By Lemma 1, we know that under these circum-
stances, all nodes must eventually be notified ofϕ(m).
Let c be some correct node. We know thati has coop-
erated withc and responded to all of its audits, sincec

does not forever suspecti. We also know thati’s history
h, as seen byc, is valid, sincec does not exposei. For
the same reason, we know thatϕ(m) is consistent with
h, so this cannot be the reasoni is detectably faulty.

The only other potential reasoni could be detectably
faulty is that it has sent some other messagem′ that is
observable by some correct nodec′, such thatϕ(m) is
inconsistent withϕ(m′). But, by Lemma 1, we know

7

that either some node along the path ofm′ is exposed
or forever suspected, or all correct nodes are eventually
notified of ϕ(m′) as well. In the first case,i is faulty
with respect tom′, and a faulty accomplice is exposed or
forever suspected, so the theorem follows. In the second
case, we know thatc has not exposedi, soϕ(m′) must
be consistent withh and therefore also withϕ(m). This
is a contradiction. 2

A.3 Eventual strong accuracy

Theorem 3 No correct node is forever suspected by a
correct node.

Proof: Assume the opposite, i.e. there is a correct nodei

that is forever suspected by another correct nodek after
some timet1. Let t2 > t1 be the first timek checksεi.
Sincek still suspectsi after t2, εi must have contained
some valid, unrefuted challengec. Moreover, we know
thatk must have challengedi with c, buti did not provide
a valid response.

The challenge c can either be
chal(audit,ai,x,ai,y) or chal(send,m).
If it is an audit challenge, it can only be valid if both
ai,x andai,y are authenticators signed byi, andy > x

(recall that signatures cannot be forged). But sincei

is correct, its log is well-formed, so the authenticators
ai,x andai,y must correspond to existing log entriesex

andey with the corresponding hash values. Thus,i can
extract the log segmentL = ex, . . . , ey and use it to
construct a valid response.

Now assumec is a send challenge. There are two
cases: Eitheri has previously receivedm, or it has not.
If the former holds,i, being correct, must have an en-
try sendi(ack(m)) in its log. Using the authenticator
ai,x covering this entry, it can construct a valid response.
If i has not yet receivedm, it can accept it now, which
produces the required log entries and again enablesi to
construct a valid response.

But if i can construct a valid response, it would have
done so and replied tok. Eventually, this reply would
have been received byk, so it cannot have suspectedi

forever. This is a contradiction. 2

Theorem 4 No correct node is ever exposed by a correct
node.

Proof: Assume the opposite, i.e. there is a correct node
i that is exposed by another correct nodej. This means
thatεi contains a proof of misbehaviorp, which is valid
(becausej, being correct, would have checked this be-
fore exposingi).

The proof p can either be
proof(inconsistent,ai,x,L), or
proof(invalid,c,L). In the first case,ai,x

andL must be signed byi, andL must contain an entry
ex that has the same sequence number asai,x, but a
different hash. Buti is correct, so it never uses the same
sequence number twice. Thus, the second case must
apply. Sincep is valid, L must be signed byi, c must
match the first checkpoint inL, and L must fail the
conformance check forAi. But i is correct, so it must
have faithfully recorded its inputs and outputs in the log,
and sinceAi is deterministic by assumption, it must have
produced the same outputs as the ones inL, soL cannot
fail the conformance check. This is a contradiction.2

8

