The Case for Byzantine Fault Detection

Andreas Haeberlen Petr Kouznetsov Peter Druschel
Rice University, MPI-SWS MPI-SWS MPI-SWS

Technical Report MPI-SWS-2006-001

1 Introduction ables the system to resolve he-said-she-said situations in
which two nodes accuse each other of having failed.

Distributed systems are subject to a variety of failures Our goals in this paper are threefold: First, we exam-

and attacks. In this paper, we consider general (Byzanine the trade-offs between fault detection and traditional

tine) failures [11], in which a failed node may exhibit BFT. Second, we give a precise definition of the class of

arbitrary behavior. In particular, a failed node may cor-Byzantine faults that can be detected with this approach.

rupt its local state, send random messages, or even seffihally, we give a brief sketch of a practical system that

specific messages aimed at subverting the system. Marignplements such a detector.

security attacks can be modeled as Byzantine failures,

flljjgt?ois censorship, freeloading, misrouting, or data COM 1 The casefor fault detection

Systems can be protected with Byzantine fault toler-Clearly, technigues that mask Byzantine failures are easy
ance (BFT) techniques, which caraska bounded num- to use because, unlike fault detection systems, they pro-
ber of Byzantine failures, e.g. using state machine replivide the application designer with the abstraction of a
cation [4]. BFT is a very powerful technique, but it has system in which failures simply do not occur. So what
its costs. In a practical system that needs to tolerate upgasons are there to opt for fault detection?
to f concurrent Byzantine failures, BFT cannot be im- You need fewer machines. If a system can suffer
plemented with less thaBf + 1 replicas [3]. More- Uptof concurrentfailures, BFT cannot be implemented
over, BFT scales poorly to large replica groups; as moravith less thar8 f + 1 machines. Detection, on the other
servers are added, the throughput of the system may aéand, can be accomplished even with a single correct ma-
tually decrease [7]. chine; hence, it requires onlfy+ 1 machine$. The im-

In this paper, we explore an alternative approach thaPortance of this resultis not only in the reduced hardware
aims atdetectingrather than masking faulty behavior. réquirement. BFT is useful only if node failures are not
In this approach, the System does not make any attemﬁprrelated. Thus, a” maChineS Should |dea”y run d|f'
to hide the symptoms of Byzantine faults. Rather, eacHerent operating systems, different application software
node is equipped with a detector that monitors the othePa@ve separate power supplies, etc., to ensure they do not
nodes for signs of faulty behavior. If the detector de-have any common vulnerabilities. This is easier to ac-
termines that another node has become faulty, it notifie§0MPplish for a smaller number of machines.
the local node, which can then take appropriate action. YOU can tolerate more failures. With BFT, thefrac-

For example, it can cease to communicate with the faultyion of machines in the system that are faulty must be be-
node; once all correct nodes have followed suit, the faultyoW 33% at all times. In detection-based systems, faults
node is isolated and the fault is contained. can be detected as long as there is one correct node in the

Specifically, we consider detection systems that ar(f§ystem, irrespective of the number of faulty nodes. Thus,

based oraccountability[15]. With accountability, each 't ¢&n be used in environments where a high fraction of
action is associated with the identity of the node that hadh® nodes (sayj0%) can fail simultaneously.

taken it, which allows the system to gather irrefutable You can provision for the common case. In a BFT
idenceof faulty behavior. This has two important advan- SYStém, all replicas must process each request promptly,
tages: First, nodes can use the evidence to convince other i1pis does not contradict the impossibility results for agnent [3]
nodes that a fault has occurred. Second, the evidence ebecause detection systems do not guarantee safety.

since the client cannot make progress before most of Application

them have responded. In a detection-based system, how- .
ever, asinglereplica can process each request and re- ooPiie l nggggngégﬂ
spond immediately; the other replicas can later check the e ' hstead
response during a period of light load. Hence, a BFT State machine A ‘ ‘ Detector module B
system must be provisioned such that each machine can send(m) i

handle the peak load, while in a detection system, each recv(m)

machine must merely be able to handledieragdoad. Network

Detection ischeaper. The reason is that asynchronous
checking avoids the consensus required in state-machine) o
replication, and it enables the aggregation of message§/9ure 1: Information flow between application, proto-
state and processing associated with detection. Alsd=°!: @nd detector module on node
there is no need for the replicas to be strongly consistent,

which makes it much easier to handle view changes. 2 Detectable failures

A perfect detection system would immediately detect any

Byzantine fault. The power of a practical, efficient de-
1.2 Usesof fault detectors tection system, however, is necessarily limited. In this

paper, we will assume that the detector on a correct node

We consider a fully distributed detection system wherecan observe all messages sent and received by that node.
every node is equipped with its own detector which This clearly means that some Byzantine faults are not ob-
watches for faults on the other nodes. Once this detecservable and thereforannotbe detected. For example,

tor reports a fault, the local node can respond in varioug faulty storage node might report that it is out of disk
ways. As a first step, it can stop communicating with theSPace, which cannot be verified without knowing the ac-
faulty node. The node can then distribute the evidencdual state of its disks. _

in its possession to other nodes, so they can also respond!n the following, we formally define the class of
and thus isolate the faulty node. Finally, the node can iniByzantine faults that can be detected under this assump-
tiate recovery. For example, a storage system can creaton. We distinguish two types of faults. Informally, a
additional replicas of all objects stored on the faulty node"0dei is detectably faultyf the behavior it exposes to

and/or notify a human operator, who can then repair th&©mect nodes could not be observed ifvere correct,
faulty node. anddetectably ignoranif i ignores a message sentito

Th fad . q by a correct node. For example, if a correct node requests
e mere presence of a detection system can reducg, o seryice thatis supposed to grant,is detectably

the likelihood of certain faults. For examplg, It can _d's' faulty if it denies the request, and detectably ignorant if
courage attackers and freeloaders by creating a d's'nce'ﬂ'pretends that it has not received the request at all.
tive to cheating, since a faulty node risks isolation and

expulsion from the system. Furthermore, if the system
maintains a binding from node identifiers to real-world 2.1 ~ System model

principals, then even the owner of_a faulty node could be\Ne consider a sal of nodes Every node is modeled as

exposed and held legally responsible. a state machingl; and a detector modulB; (Figure 1).
Fault detection also has its limits. Detection is notInformally, we say that a nodeis correct if it respects

sufficient for failures that have irreversible and seriousthe specifications of botd; andB;. Otherwise, the node

effects, such as deleting all copies of an important docis faulty.

ument. However, detection and accountability offers an Nodes communicate with each other through message

efficient and scalable alternative to BFT for a large clasgassing. We assume that messages are uniquely identi-

of real-world failures, including freeloading, censogshi fied. For a message., let sendefm) andreceivefm)

and denial-of-service. Moreover, we believe that detecdenote the sender and the receivemof respectively.

tion can be used in combination with BFT (e.qg. to preventFor the moment, we do not put any restrictions on local

BFT from reaching its failure bound by ejecting faulty processing time and communication delays. However,

nodes), which would allow the design of dependable, yeive assume that, after some number of retransmissions,

scalable distributed systems. The wide-spread relianca message sent from a correct node to a correct node is

on accountability in human society, both to discourageeventually received.

unwanted behavior and to encourage compliance with An eventis either send(m) € O;, wherei

the law, provides further justification for the approach. sendefm), or receivg(m) € I;, where j

receivefm), or an application-specific input or output. ~ (2) There exists a messagé€ that was also sent by
An executionE is a sequence of events such that in and is observable i, such thatp(m) is inconsis-

E, eachm is sent and received at most once, and each tent witho(m’)

receive(m) is preceded by the correspondisend (m).

We distinguish events associated with the state machin

A; and events associated with the detector modgjle - .) o

E|A; denotes the subsequencef@that consists of all We say that a nodgis detectably ignoranin £ if i is

events associated with; in E, and E|B; denotes the not detectably faulty irF and there exists a message

subsequence af that consists of all events associated S€Nt 10 by a correct node, such that, for all observable
with B; in E. We say that a nodgis correctin E if (1) ~ MeS5agesn sent byi, receive(m) does not appear in
E|A; (respectivelyE|B;) conformsto A; (respectively, p(m').

By), i.e., if the sequence of outputs producedFip4;

(E|B;) is legal, given4; (B;) and the sequence of inputs 2.3 Guarantees

in E|A; (E|B;), and (2) if E is infinite, then bothF|A;
and E|B; are also infinite. Otherwise we say thais
faultyin E.

Zhe set of nodes causally affected hyandm’ (if m’
exists) are calledccomplice®f ¢ with respect ton.

When the detector modulB; on a correct nodé has
seen evidence of faulty behavior on another ngdé
sends dailure indicationto its local application process.
We define three different types of indicationsusted;,
2.2 Detectable faultiness and ignorance suspected; andexposed;. Intuitively, if the moduleB;
outputssuspected;, there is evidence thatis ignoring
certain inputs, e.g. by refusing to accept a service request
from a correct node. If it outputsrposed;, there exists
a proof thatj is faulty, i.e. that it has deviated from the
sHecification of its state machiak;. Finally, B; outputs
?rustedj while none of the other conditions hold.

We can use a definition similar to that of [5, 9] to de-
scribe these properties. Thus, the detection system guar-

versa.. Ifi IS a correct node, one trivial example of a antees that the following properties hold in every execu-
valid history isE| 4;. tion:

Let M(E) denote the set of messages received by the
nodes in an executioll. We assume that there exists a o Eyentual strong completeness: (1) Eventually, ev-

We define ahistory of a nodei as a sequence of events
of A;. A history h of a nodei is valid if it con-
forms to 4,, i.e. if, given the sequence of incoming
messages and application-specific inputé,ird; could
have produced the sequence of outgoing messages a
application-specific outputs . A pair (hy, he) of his-
tories ofi is consistentf h; is a prefix ofhsy, or vice

history mapy that associates every message: M (E) ery detectably ignorant node is suspected forever by

with a history ofsendefm). For a correct nodep(m) every correct node, and (2) if a nodes detectably

is the prefix of the local executioR|sendefm) up to faulty with respect to a message then eventually,

and includingsendm). Thus, for any message sent some faulty accomplice af (with respect tan) is

by a correct nodey(m) is valid, and for every pair of exposed or forever suspected by every correct node.

messages: andm’ sent by a correct node(m) and

p(m') are consistent. e Eventual strong accuracy: (1) No correct node is
We say that a message is observable inE if there forever suspected by a correct node, and (2) no cor-

exists a correct nodé and a sequence of messages rectnode is ever exposed by a correct node.

mai,...,ms such that
Note that the detector need not guarantee that a cor-

(i) m1 =m, rect node is always trusted by another correct node; it

can jump fromtrustedto suspectedand back, e.g. due

to long message delays. Further, a detectably faulty node

(iii) for all j = 2,...,k: receivém;_,) belongs to mjight never be detected. However, if a node is detectably
p(my). faulty, thensomefaulty node will eventually be exposed

or suspected forever. Thus, if there are only finitely many

faulty nodes in the system, correct nodes can be affected

by their behavior only finitely long.

(i) receivém,) belongs taF'|A;,

In other wordsyn is observable if it causally precedes
at least one event on a correct node.

We say that a nodeis detectably faultywith respect
to a message: in an executior® if m that was sent by
i, is observable irE, and satisfies one of the following 3 A practical detector for Byzantine faults

properties: _)
To show that detection systems are practical, we now

(1) ¢(m) is not valid (forz) briefly sketch the design of PeerReview, a system that

can provide the guarantees stated in Section 2.3. A prod8.3 Auditing
can be found in Appendix A. We have implemented . oo) g
PeerReview and initial results suggest that it is practicaF@ch node is periodicallyauditedby every other no

and efficient. An experimental evaluation is the subject?Uring an audit, the auditgrfirst asksi for a signed log
of a future, full paper. segment that covers all entries since the last ayditen

validates the log against the most current authenticator
it has obtained fot. If ¢ refuses to comply; begins to
suspeci.
Next, j performs aconsistency chedbo see if the log
3.1 Assumptionsand goals matches all the recent authenticators it has obtained for
1. If this fails, ¢ has forked its log or is keeping multiple
89pies, and obtains a signed confession. The evidence

For PeerReview, we assume that the system can be mo X
eled as described in Section 2.1, with two additional as!S then made available to other nodes, who can thus mark

sumptions: First, that the protocol deterministic i.e. S €xposed. . .

produces the same outputs given the same sequence ofin a third step,j extracts all authenticators from the _
inputs. This is a fairly common assumption in state ma-99 Ségment and forwards them to the other nodes. This
chine replication [4, 10]. Second, that nodes hsiveng ~ €NSures thatz even ifis faulty and'has not performed
identitiesand a keypair that can be used to sign message%'?'s step earlier, the ot.her nodes YVI|| eventual.ly be aware
This can be accomplished, for instance, by giving eactP! all relevant authenticators. This step requitisv?)

node an identity certificate, signed by a certification au-messages; however, these messages are small and can be

thority, that ties its public key to its node identifier. heavily aggregated. _ _
Finally, j performs aconformance checklt instanti-

We also make the common assumption that the atyieg g Jocal copy of the state machidgand initializes
tacker does not have the ability to break cryptographiGy yith a recent checkpoint from the log. Then it replays
signatures. Other than that, the Byzantine nodes may bey the inputs from the log and checks whether the corre-
have arbitrarily and/or collude with each other. sponding outputs match the ones in the log. Thuzn

check protocol conformance without an explicit protocol
specification. If it detects a divergence, it has obtained a
signed confession and can thus expose

3.2 Secure historiesand commitment
3.4 Checking evidence
Each node is required to keep a log of all the inputs an

outputs of its local state maching. The log is orga- two types of evidence. Ifis detectably faulty; obtains

nized as a hash chain, similar to a secure history [13]é|ther a) an authenticator and a log, both of which are
such that the top-level hash covers the contents of the en- :
. . signed but do not match, or b) a signed log segment that
tire log. Furthermore, each node must frequeatygnmit

o the contents of its log by publishing anthenticatoy fails the conformance check. Both constitute a signed

i.e. a signed copy of its top-level hash value. This make confession. Ifi is detectably ignoran; obtains a chal-

the logtamper-evidenand ensures that nodes cannot re- enge (e.g. arequestfora C.efta'” Iog segment)ztbz?.n-
. ; not answer, except by providing a signed confession.
vise history [13].

Both types of evidence can be distributed to the other
Nodes must sign all messages they send, and acknowhodes, who can verify them independently, either by re-
edge all messages they receive. If a message is not ageating the checks performed hyin case of a signed
knowledged after several retries, it is broadcast to theonfession) or by contactingand checking its response
other nodes, who then challenge the node to accept thgn case of a challenge). PeerReview ensures that this
message. This ensures that a node is suspected by aheck will always fail for a correct node, since they never

qf a node; detects a fault on a nodeit obtains one of

correct nodes if it refuses to accept a message. generate signed confessions and can respond to any chal-
Each message or acknowledgmentontains an au- €nge- _ _
thenticator, as well as a short proof thatad(m) or The output of the PeerReview failure detector on a

ing log. The recipient extracts the authenticators andCoPY of the state machine to be run by all the nodes in
once in a while, forwards them to the other nOdes'_ThUb’ 2We assume here that there are exagtly- 1 nodes in the system.

all nodes are eventually made aware of all authenticatorg, jarger systems, it is sufficient thdt+ 1 other nodes audit a given
that have been sent to a correct node. node, but we omit the details due to lack of space.

the system. A node can ensure this, for instance, by obheuristics used in IDS tend to produce either false posi-
taining a signed binary program from a trusted authoritytives, false negatives, or both. Reputation systems such
To bound the space required for logs, nodes may bas EigenTrust [8] can be used against Byzantine failures,
allowed to discard old log entries, e.g. after a month. Inbut, unlike PeerReview, they cannot prevent a coalition
this case, older evidence can no longer be verified andf malicious nodes from denouncing a correct node. Fi-
must be discarded as well, which eventually allows faultynally, trusted computing platforms like TCG/Palladium
nodes to return to the system. This is acceptable, as longan detect failures that involve software modifications,
as the system has ample time to respond to the failureut require special hardware and force users to give up
and initiate repair. some control over their own equipment. PeerReview
works on commodity hardware and merely checks pro-
35 Discussion tocol conformance.
Ffeeerewew prowdes the beneflts of detection we 0ut5 Conclusion and future work
lined in Section 1.1. Even a single correct node can,

through auditing, detect and obtain evidence of any oby, his naper, we have discussed an alternative approach
servable faults, and it can take appropriate action. Audity, handling Byzantine faults, in which the system does

ing can be performed asynchronously, so the nodes cat mask faults but rather detects and responds to them.
defer the corresponding overhead to periods of light loadyye have formally specified the class of faults that can

It requires comparatively few messages: With a failurepe getected with this approach, and we have sketched
bound off n20des, Castro and Liskov's BFT protocol [4] the design of a practical system that implements it. To

requiresis f +9f42r2 messages per request, while Peer-q,, ynowledge, this is the first practical, general-purpose
Review uses only“ 4+ 3 f 4+ 2. Moreover, most of these algorithm for detecting Byzantine faults.

messages can be aggregated. We believe that this work opens up a new and inter-
esting direction for future research. Detection can be
4 Rdated work used to protect a much wider range of systems against
Byzantine faults, especially where deploying BFT is in-

Our concept of a detection system is based on the failuréeasible or prohibitively expensive. For example, large-
detectors by Chandra and Toueg [5]. These were definescale distributed systems have long been suffering from
for crash failures, but Malkhi and Reiter [12] later ex- freeloading and various attacks. Detection could provide
tended them to the Byzantine failure model. Kihlstrom accountability and thus an inexpensive yet highly effec-
et al. [9] have introduced several classes of failure detective defense.
tors that exposdetectableByzantine failures. However, Also, we believe that further research in detection sys-
they consider classes of algorithms in which all messagetems will yield a variety of new detectors with interesting
are broadcast, and in which processes know when to exradeoffs. For example, more powerful detectors could
pect messages from other processes. PeerReview doles constructed by adding more sensors, such as attesta-
not require these assumptions. tion, and hybrids between detection and BFT could allow

State machine replication [10, 14] is a classical tech-more fine-grained tradeoffs between protection and over-
nique for masking a limited number of Byzantine faults. head.
Today's state-of-the-art BFT techniques, e.g. [4], are
based on this idea. The BAR model [1] combines thisReferences
approach with a system structure that causes the syste] A.S. Aiyer, L. Avisi, A. Clement, M. Dahlin, J.-P. Man, and
to operate in a Nash equilibrium. Thus, BAR can addi- C. Porth. BAR fault tolerance for cooperative services Po-
tionally tolerate an unbounded number of rational nodes __ ¢€edings of SOSPp®ct 2005. , ,
that are willing to deviate from the protocol in order to 2 fL(;rABI\{,fgn%hé\A g'u"g’;;,r'ﬁ-S@gﬁ;"g’s?"ﬁi‘m“ﬂ-eﬁcﬁ:ﬁg; Jrau gﬁﬁ)ap
increase their own utility. Although both te_chnlq_ues are 'él:ﬁircngtfg&'ic\/gggﬂg% gggfg_r%ngaeg%g gggfgg?%eaﬁrgggMQ
related to detection systems, neither can identify faulty

: [3] G.Bracha and S. Toueg. Asynchronous consensus anddarstad

nodes, and both require more resources. protocols.Journal of the ACM32(4), 1995.

Alvisi et al. [2] introduced a technique that moni- [4] M. Castro and B. Liskov. Practical Byzantine fault talace. In
tors quorum systems and raises an alarm if the failure _ Proceedings of OSDI'9pages 173-186, 1999.
assumptions are about to be violated. This technique[S] ﬁéBé%?:}ﬂg[ﬁe%ngyieﬁgﬁ%,r%Trgg'ﬁ?&%@ﬁ’%&?ﬁ%ﬁggi
is probabilistic and, unlike PeerReview, cannot identify March 1996.
which nodes are faulty. [6] D.E.Denning. Anintrusion-detection modéEEE Transactions

Intrusion detecti t 6 detect tain t on Software Engineering 3(2):222—-232, 1987.
ntrusion aetection sys ems[]Can etectcertain ypes[7] J. R. Douceur and J. Howell. Byzantine fault isolationtfre

of protocol violations; however, unlike PeerReview, the Farsite distributed file system. Rroc. of IPTPS'06Feb 2006.

[8] S.D.Kamvar, M. T. Schlosser, and H. Garcia-Molina. Thgeh-
Trust algorithm for reputation management in p2p netwotks.
Proc. 12th International WWW Conferendéay 2003.

all types of evidence about a nogJéncluding the condi-
tions under which they are valid, is given below:

El

[10]

[11]
(12]

[13]

[14]

(18]

A

K. P. Kihilstrom, L. E. Moser, and P. M. Melliar-Smith. Bga-
tine fault detectors for solving consensilifie Computer Journal
46(1):16-35, 2003.

L. Lamport. Using time instead of timeout for fault-¢o&nt dis-
tributed systems ACM Trans. Prog. Lang. Sys6(2):254-280,
1984.

L. Lamport, R. Shostak, and M. Pease. The Byzantine rgése
problem.ACM Trans. Program. Lang. Sys#(3):382-401, 1982.

D. Malkhi and M. K. Reiter. Unreliable intrusion detawt in
distributed computations. IBSFW pages 116-125, 1997.

P. Maniatis and M. Baker. Secure history preservatimough
timeline entanglement. IRroceedings of the 11th USENIX Se-
curity SymposiumSan Francisco, CA, Jan 2002.

F. B. Schneider. Implementing fault-tolerant sersiessing the
state machine approach: a tutoriaBhCM Computing Surveys
22(4):299-319, 1990.

A. R. Yumerefendi and J. S. Chase. The role of accoulitiaii
dependable distributed systems.RAroceedings of the 1st Work-
shop on Hot Topics in System Dependahilityn 2005.

Proof

Our goal is to prove that PeerReview has the properties
defined in Section 2.3 of this paper, namely:

e Eventual strong completeness: (1) Eventually, ev-

We begin by giving some additional details of the

ery detectably ignorant node is suspected forever by
every correct node, and (2) if a nodés detectably
faulty with respect to a message then eventually,
some faulty accomplice of (with respect tan) is
exposed or forever suspected by every correct node.

Eventual strong accuracy: (1) No correct node is
forever suspected by a correct node, and (2) no cor-
rect node is ever exposed by a correct node.

e chal (audit, a;,, a;y) is evidence that nodée
is refusing to return the log segmefit,;, ..., e, }.
The challenge is valid iff both; , anda; , are au-
thenticators signed by andy > .

e resp(audit, a;gz, aiy, L) shows thati has

properly responded to the challenge above. The

response is valid ifthal (audit, a; s, a;y) is
valid, L = {eg,...,e,} is a well-formed log seg-
ment signed by, and the hashes in; , anda;
match those of the corresponding entried.in

e chal (send, m) is evidence that is refusing to
accept a message. The challenge is valid iff
receiver(m) = i.

e resp(send, m, a; —1, a;) Shows that has in
fact accepted the message The response is valid
iff chal (send, m) is valid, botha; ,—1 anda; ,
are signed byi, and a;, validate$ a log entry
send;(ack(m)).

e proof (inconsistent, a;,, L) shows that:
is maintaining several inconsistent histories. The
proof is valid iff L is signed by; and contains an
entrye, that has the same sequence number; as
but a different hash.

e proof (invalid,ec¢ L) shows thati's history
does not conform to its state maching The proof
is valid iff L is signed byi, c matches the first check-
point in L, and L fails the conformance check for
A;.

A piece of evidence igwvalid if it is not valid accord-
ing to these rules. Invalid evidence is not considered fur-

PeerReview algorithm in Section A.1. Then we provei,q, by PeerReview.
each of the above four claims in Sections A.2 and A.3.

A.1 Validating evidence

In the context of PeerReviewgvidenceis a piece of
data that supports a statement about the behavior of
particular node. There are three different kinds of evi-
dence for a nodé. A challengechal (x) states that
1 has refused to respond to requesind therefore may
be detectably faulty or detectably ignorant.résponse

Each nodej maintains arevidence set;; for every

other nodei. For simplicity, we will assume that if

resp(x) states that has in fact responded to request
x and thus refutes the corresponding challenge. Finally,

a proof pr oof (x) states that is detectably faulty. A
proof also includes some information about the nature o
the fault.

A faulty node could try to incriminate a correct node

2

andk are correct nodes, then; ande;;, are eventually
consistent, so we can treat them as a singlezsetin
practice, this can be achieved e.g. by allowing correct
"Rodes to gossip about evidence.
To save space, nodes immediately discard invalid evi-
dence. Also, if; contains both a valid challengeand a
matching, valid responséc), the nodes may eventually
discard both.
A nodej generates failure indications for another node
as follows: Ife;; contains a valid challenge but no
]matching, valid response, thgroutputssuspected;. If
€5 contains a valid proof, thep outputsexposed;. In
all other casesj outputstrusted;.

by forging evidence. Therefore, every node must estab- st check this, the previous hash._1 is required, which can be

lish that the evidence igalid before using it. A list of

taken froma; 1.

A.2 Eventual strong completeness sufficient if we can show that, if all nodes are notified of
¢(m,) (for somezx > 1), then all nodes are also notified

of p(m,_1), or sender(m,,) is either exposed or forever

suspected.

Proof: Assume the opposite, i.e. there is a detectably ig- I sender(m.) is exposed or forever suspected, the

norant node and a correct nodé such that, for every claim follows immediately. Otherwise, it must have fully

time ¢, there is another tim& > ¢ at which’ does not cooperated with all correct nodes. If it had refused to

suspect. Sincei is detectably ignorant, we know that it @nswer an audit, aaudi t challenge would eventually

is not detectably faulty, and that there exists some mestave been added to its evidence set, and it would have

sagen that a correct nodghas sent to it, buthas never been suspected forever by all correct nodes. Moreover,

sent another messagé such thatreceive;(m) appears e know th_at each correct node must have sees_llld

in p(m'). log; othervylse that_node wogld have added awval i d
Since acknowledgments are mandatgrynust have proof of misbehavior the evidence set, anrthder(m,)

resentm several times, then it must eventually have Would have been exposed.

given up and added a challengdal (send, m) to Let h, be the history of sender(m,) as ob-

ei, S0 eventually all correct nodes must have startederved by some correct node. We know that

suspectingi. Let #, be the timek is first notified #(7m) ends with an entrysendycceiver(m.)(ma)

of the challenge. By our assumption, we know that(otherwisereceiver(m,) would never have accept_ed

there is a timet, > #; at whichk does not suspeat mg). Therefore, we know that, must also contain

But this is only possible if the challenge has been re-s¢7dreceiver(m.) (1), because otherwise would have
futed because esp(send, m, a; .1, a;,) has been @dded ar nconsi stent proof of misbehavior to its

added toe;, and because, validates a log entry evidence set, angknder(m,) would have been exposed.

send;(ack(m)). By definition,i is not detectably faulty, BUt if 2, containssend,.cceiver(m.)(m:), it must also
S0 receive;(m) must have precedeend;(ack(m)) in ~ containan entryeceive(m,—1) (if this was not the case,

o(ack(m)), which means thatcannot be detectably ig- 7%+ Would not be causally connected #@;, ;). When
norant. This is a contradiction. O auditing this entryg, extractsy(m,—1) and notifies all
the other nodes.

The following discussion is related to a mechanism The claim follows by reverse induction over U
described in Section 3.2. Recall that nodes commit to
the contents of their logs by publishing authenticators, orTheorem 2 If a node: is detectably faulty with respect
signed hashes of their logs. We say that a npieno- to some message:, then eventually, eithei itself or
tified of a historyp(m) of another nodé if it receives ~ some faulty accomplice efvith respect tan is exposed
an authenticatot; , for a log that corresponds ta(m). ~ or forever suspected by every correct node.
The authenticator allowsto obtaing(m) from ¢, which
j can then validate against the hash value in the autherf2r 00f: Assume the contrary, i.e. that there is a notheat
ticator. Ifi does not complyj can uses; , in anaudi t IS detectably faulty with respect to some messagéut
challenge and thus cause all correct nodes to suspect Neither: nor any of its faulty accomplices with respect to

As described in Section 3.3, the notification does not is exposed or forever suspected by some correct node
have to be performed byitself. Since an authenticator J- Since correct nodes are not exposed or forever sus-
is included with each log entmeceive;(m), other nodes ~ Pected under any circumstances (see Section A.3), it fol-
can extract the authenticators during audits and then pelows thatno node along the path of causality is exposed
form the notification ori's behalf. or forever suspected.

By Lemma 1, we know that under these circum-

Lemmal If a messagen is observable by a correct Stances, all nodes must eventually be nqtifieda@h).
nodec via a chain of messages., . . ., my, then either Let ¢ be some correct node. We know thidtas coop-
each correct node is notified g{m,) forall 1 < z < k erated withc and responded to all of its audits, since

or somesender(m,) is exposed or forever suspected bydoes not foreve.r suspeictWe also know that's history
all correct nodes. h, as seen by, is valid, sincec does not exposeé For

the same reason, we know thatm) is consistent with
Proof: Note that, by the definition of observability, h, so this cannot be the reasois detectably faulty.

Theorem 1 Eventually, every detectably ignorant node
is suspected forever by every correct node.

my = m, receiver(my) = ¢, and for all2 < j < k, The only other potential reasarcould be detectably
receive(m;_1) belongs tap(m;). faulty is that it has sent some other messagehat is
We begin by observing that, sineds correct, it will observable by some correct node such thatp(m) is

certainly notify all other nodes ap(my). Thus, itis inconsistent withp(m’). But, by Lemma 1, we know

that either some node along the pathmef is exposed andL must be signed by, and L must contain an entry

or forever suspected, or all correct nodes are eventually, that has the same sequence numben;as but a
notified of o(m’) as well. In the first case, is faulty different hash. But is correct, so it never uses the same
with respect ton’, and a faulty accomplice is exposed or sequence number twice. Thus, the second case must
forever suspected, so the theorem follows. In the secondpply. Sincep is valid, L must be signed by, ¢ must
case, we know that has not exposet] sop(m’) must match the first checkpoint id,, and L must fail the

be consistent with and therefore also witl»(m). This ~ conformance check foA;. Buti is correct, so it must

is a contradiction. O have faithfully recorded its inputs and outputs in the log,
and sinced; is deterministic by assumption, it must have
A.3 Eventual strong accuracy produced the same outputs as the onés,iso L cannot

fail the conformance check. This is a contradictiorid
Theorem 3 No correct node is forever suspected by a
correct node.

Proof: Assume the opposite, i.e. there is a correct node
that is forever suspected by another correct nodéter
some timet;. Letty > t; be the first timek checks:;.
Sincek still suspectg aftert,, ¢; must have contained
some valid, unrefuted challenge Moreover, we know
thatk must have challengedvith ¢, but: did not provide

a valid response.

The challenge ¢ can either be
chal (audit, a;z, aiy) or chal (send, m).

If it is an audi t challenge, it can only be valid if both
a;, anda;, are authenticators signed byandy > x
(recall that signatures cannot be forged). But since
is correct, its log is well-formed, so the authenticators
a; » anda; , must correspond to existing log entries
ande, with the corresponding hash values. Thusan
extract the log segmet = e,,...,e, and use it to
construct a valid response.

Now assume: is asend challenge. There are two
cases: Eithei has previously receiveah, or it has not.

If the former holds,i, being correct, must have an en-
try send;(ack(m)) in its log. Using the authenticator
a; » covering this entry, it can construct a valid response.
If + has not yet receiveth, it can accept it now, which
produces the required log entries and again enalties
construct a valid response.

But if 4 can construct a valid response, it would have
done so and replied th. Eventually, this reply would
have been received by, so it cannot have suspected
forever. This is a contradiction. O

Theorem 4 No correct node is ever exposed by a correct
node.

Proof: Assume the opposite, i.e. there is a correct node
1 that is exposed by another correct ngdelhis means
thate; contains a proof of misbehavigr which is valid
(becausej, being correct, would have checked this be-
fore exposing).

The proof P can either be
proof (i nconsi stent, a;,, L), or
proof (invalid,c, L). In the first case, a;,

