
Fast on Average, Predictable in the Worst Case:
Exploring Real-Time Futexes in LITMUSRT

Roy Spliet
MPI-SWS

Manohar Vanga
MPI-SWS

Björn B. Brandenburg
MPI-SWS

Sven Dziadek∗
TU Dresden

Abstract—This paper explores the problem of how to improve
the average-case performance of real-time locking protocols,
preferably without significantly deteriorating worst-case perfor-
mance. Motivated by the futex implementation in Linux, where
uncontended lock operations under the Priority Inheritance
Protocol (PIP) do not incur mode-switching overheads, we extend
this concept to more sophisticated protocols; namely the PCP,
the MPCP and the FMLP+. We identify the challenges involved
in implementing futexes for these protocols and present the
design and evaluation of their implementations in LITMUSRT,
a real-time extension of the Linux kernel. Our evaluation shows
substantial improvements in the uncontended case (e.g., a futex
implementation of the PCP lowers lock acquisition and release
overheads by up to 75% and 92%, respectively), at the expense
of some increases in worst-case overhead on par with Linux’s
existing futex implementation.

I. INTRODUCTION

Suspension-based real-time locking protocols, such as the
classic Priority Inheritance Protocol (PIP) [27], are used
in real-time systems to enable mutually exclusive access to
shared resources while preventing unbounded priority inver-
sions [27] (i.e., while preventing lower-priority tasks from
blocking higher-priority tasks for potentially unbounded du-
rations). Such blocking, termed priority-inversion blocking
(henceforth pi-blocking [8]), increases a task’s worst-case
response time and thus must be fully bounded and accounted
for during schedulability analysis.

Practical systems, in addition to accounting for pi-blocking,
must also take into account the system overheads associ-
ated with lock acquisition and lock release operations. These
overheads typically comprise both hardware overheads, such
as those incurred by protection mode switches, as well as
bookkeeping code in the operating system kernel. Failure
to account for these overheads can lead to execution time
underestimates and consequently to deadline misses.

Prior work considering locking overheads in real-time sys-
tems (reviewed in Sec. VI) has primarily focused on worst-
case overheads. However, there are also workloads that can
benefit from lower overheads in the common (average) case,
where locks are typically uncontended. For instance, in soft
real-time workloads such as video playback, locks may be
acquired many thousands of times per second [6]. Reducing
average-case locking overhead in such applications allows for
higher throughput (e.g., higher framerates) and fewer deadline
misses. Similarly, in mixed-criticality systems, lowering the

∗Contributed to this work as part of a bachelor’s thesis completed at the
University of Saarland, Saarbrücken, Germany.

average-case overheads incurred by high-criticality tasks can
aid in accommodating and avoiding deadline misses in lower-
criticality tasks. However, while these examples illustrate
some of the benefits of low average-case overheads, system
schedulability is ultimately determined based on worst-case
overheads. Thus, a reduction in average-case overheads should
ideally not significantly increase worst-case overheads.

An effective approach for achieving these goals is the Linux
kernel’s support for fast userspace mutexes (futexes) [16], a
mechanism that supports efficient lock implementations with
low average-case overheads. By exporting lock-state informa-
tion to userspace, futexes avoid expensive system calls when
a lock is uncontended, which is arguably the common case in
well-designed systems.

While futexes have been successfully applied to implement
the PIP in Linux [16], futex-based implementations have not
yet been proposed for more demanding protocols such as
the Priority Ceiling Protocol (PCP) [27], the Multiprocessor
Priority Ceiling Protocol (MPCP), and the FIFO Multipro-
cessor Locking Protocol (FMLP+) [3, 5]. Given that, on
uniprocessors, the PCP offers lower (and in fact optimal)
bounds on pi-blocking, and given that, on multiprocessors,
specialized protocols such as the MPCP or the FMLP+ are
required to ensure bounded pi-blocking (as priority inheritance
is ineffective across partitions), the lack of futex support for
these protocols is a considerable drawback in the context of
real-time systems that require both predictability and efficient
average-case performance. In this paper, we address this
limitation by identifying how futexes may be realized for these
three protocols, and by reporting on an empirical assessment
of a prototype implementation in LITMUSRT.

The key challenge in extending the PIP futex implemen-
tation to more sophisticated protocols reduces to the follow-
ing difference: the PIP can be considered to be a reactive
locking protocol, as it takes effect only in reaction to lock
acquisition or lock release operations. In contrast, the PCP
and multiprocessor locking protocols such as the Multipro-
cessor Priority Ceiling Protocol (MPCP) and the FMLP+ are
what we term anticipatory locking protocols: they make use
of additional information about the workload to anticipate
problematic scenarios and prevent them before they can arise.
For example, under the PCP, each lock is associated with a
priority ceiling that specifies the highest priority of any task
that may acquire it, and there exists a system ceiling, which
is the lock with the highest priority that is currently being
held by some task. If the priority of a task is lower than

1

the system ceiling, it is prohibited from acquiring any locks
under the PCP, even when the lock being requested is currently
uncontended. Similarly, since priority inheritance is ineffective
across partition boundaries [9, 24, 25], the MPCP and the
FMLP+ employ priority boosting, where the priority of jobs
in critical sections is boosted past those of all local jobs to
guarantee progress. This may result in jobs blocking during
lock acquisition even in the absence of resource contention—
that is, if implemented literally, kernel interaction is required
under these protocols even in the common case.

This motivates the key question studied in this paper: how
can the futex approach be extended to support anticipatory
real-time locking protocols without violating their semantics?
Further, can this be done without significantly increasing
the worst-case overheads? To this end, this paper makes the
following contributions:

• We identify key properties of the PCP, the MPCP, and
the FMLP+ (Secs. III and IV) that allow implementing
futexes for anticipatory real-time locking protocols.

• We describe futex-based implementations of these pro-
tocols (Secs. III and IV) in LITMUSRT [3, 13]: the
PCP-DU, MPCP-DU and FMLP+-DU, respectively. Here,
“DU” stands for deferred update, as our implementations
realize futexes by deferring the update of the state of a
lock until the next time the scheduler is called.

• We evaluated these protocols (Sec. V) on an ARM Cortex
A9 quad-core system and observed a substantial reduc-
tion in uncontended-case overheads (up to 92% under a
variant of the PCP-DU), at the expense of an increase
in contended-case overheads that is no worse than that
experienced by Linux’s existing futex implementation.

We begin with some necessary background information.

II. BACKGROUND AND DEFINITIONS

We consider a real-time system under Partitioned Fixed-
Priority (P-FP) scheduling [14], where a set of n sporadic
tasks [21] is partitioned among m processors in the sys-
tem, and each processor is scheduled under a fixed-priority
scheduler. For a given task Ti, the index i refers to its base
priority (with T1 having the highest priority and Tn having the
lowest priority). Tasks are scheduled based on their effective
priority, which may temporarily exceed the base priority under
certain resource sharing policies, including each of the policies
considered in this paper. For example, the PIP temporarily
raises the effective priority of a lock-holding task when a low-
priority task blocks a high-priority one. We assume that there
is a set of shared resources R = {r1, . . . , rn} in the system,
each associated with a lock.

Although we assume P-FP scheduling and the sporadic task
model throughout this paper, the presented techniques are not
limited to P-FP or the sporadic task model and can be easily
transferred to other scheduling algorithms and task models.

A. Futexes in Linux

Futexes, short for fast userspace mutexes, are a mechanism
in the Linux kernel to support the efficient implementation

of suspension-based locks in userspace [16]. A basic futex-
enabled lock consists of (i) a shared integer that contains the
current state of the lock, and (ii) a kernel-side wait-queue
exposed through the futex API. Operations for locking and
unlocking futexes are implemented using atomic fetch-and-
increment and fetch-and-decrement instructions, respectively,
that operate on the shared lock state.

When attempting to acquire a lock, observing a value of zero
indicates that the futex was free and that it has been acquired
(the uncontended case), while a non-zero value indicates that
the futex could not be acquired (the contended case, in which
case the kernel is invoked in order to block the process).

Similarly, when unlocking a futex, the fetched value in-
dicates either that no action needs to be taken (the uncon-
tended case), or that there are tasks waiting for the futex
(the contended case, where the kernel is invoked in order to
unblock one of the waiters). The key advantage of futexes
is that processes avoid invoking the kernel, via a (relatively)
expensive system call, in the uncontended cases.

B. Locking in LITMUSRT

We implemented the protocols presented in this paper in
LITMUSRT [3, 13], a real-time extension of the Linux kernel,
as it already includes support for the sporadic task model, P-FP
scheduling, and helpful infrastructure for real-time locking
protocols. Besides several multiprocessor scheduling policies,
LITMUSRT also implements a variety of locking protocols,
including the PCP [27], MPCP [24], the original FMLP [2],
and the more recent FMLP+ [3, 5], which have been designed
primarily with low analytical pi-blocking bounds and accept-
able worst-case runtime overheads in mind.

Under LITMUSRT, real-time tasks use a mutex-based lock-
ing API to ensure mutually exclusive access to shared re-
sources. Locks are referenced by userspace tasks using lock
descriptors [7], which are simply zero-based indices into a per-
task lookup table, analogous to UNIX file descriptors. Special
system calls provided by LITMUSRT enable the creation,
acquisition, and release of locks associated with a particular
protocol. These routines track the state of a lock, suspend tasks
when the protocol prevents a particular task from acquiring
a lock, and resume tasks once they are eligible to continue.
Importantly, both locking and unlocking require the invocation
of system calls even in the uncontended case.

C. Priority Inheritance Protocol (PIP)

The conceptually simplest of the considered suspension-
based real-time locking protocols is the Priority Inheritance
Protocol (PIP) proposed by Sha et al. [27]. Under the PIP,
when a high-priority task blocks on a lock currently held
by a lower-priority task, the latter inherits the priority of the
high-priority task, thus preventing the possibility of unbounded
priority inversion. Linux’s PRIO INHERIT protocol (available
as part of the pthreads library) is a futex-based implementation
of the PIP that does not incur system call overheads for
uncontended lock operations.

Although PRIO INHERIT provides low average-case over-
heads, the PIP has several properties that make it sub-optimal

2

for use in certain applications. First, locking under the PIP
is susceptible to transitive pi-blocking [27], which occurs
when a chain of blocked jobs forms so that each job is
blocked on a resource currently held by the next job in the
(ascending priority-ordered) chain. The chain is resolved in
reverse-priority order, resulting in the highest priority task
being blocked for the duration of all critical sections in the
chain. Second, inconsistently ordered nested lock acquisitions
risk deadlock under the PIP. These properties make the PIP,
from an analytical point of view, a less attractive choice on
uniprocessors. Finally, the PIP is ineffective on multiproces-
sors under partitioned and clustered scheduling [24, 25, 27].

D. Priority Ceiling Protocol (PCP)

The Priority Ceiling Protocol [27] is a classic anticipatory
uniprocessor locking protocol which addresses the shortcom-
ings of the PIP (on uniprocessors). Under PCP, jobs experience
pi-blocking of at most one outermost critical section [27],
which is optimal on uniprocessors, and deadlocks are avoided
entirely by the precautionary blocking of jobs in anticipation
of possible cyclic dependencies, as summarized next.

In the PCP, each resource ri has a priority ceiling Π(ri),
which is the highest priority of any task that may lock ri.
During runtime, the scheduler keeps track of a system ceiling
(denoted Π̂(t)), which is the currently held lock (if any) with
the highest priority ceiling. A job may acquire a lock only
if (i) either the job’s priority exceeds the system ceiling, or
(ii) if the requesting job holds the resource that defines the
current system ceiling (in this case, we say that the requesting
job “owns” the system ceiling). If neither of these conditions
is satisfied, then the requesting job is blocked and, if the
blocked job has a higher effective priority than that of the
blocking job, its priority is inherited by the current owner of
the system ceiling. When a lock is released, the system ceiling
is lowered accordingly. When no locks are currently held (i.e.,
if the system ceiling is undefined), any task may acquire a lock.

LITMUSRT implements the Classic or Original PCP
(OPCP), where the system ceiling is maintained explicitly and
the priority of a job is raised only when a higher priority job
becomes blocked on a lock currently held by the lower-priority
job. In particular, the priority of a lock-holding job is raised
only to that of the highest-priority job currently blocked by it,
which minimizes the occurrence of priority inversions.

In contrast, Linux’s implementation of the PCP (available
under the name PRIO PROTECT in the pthreads library) is
an implementation of the Immediate Priority Ceiling Protocol
(IPCP) [1, 11, 27, 28], which is subtly different from the
OPCP. Under the IPCP, when a job acquires a lock, its
priority is immediately raised to the priority ceiling of the lock,
regardless of whether it actually blocks any higher-priority
tasks at the time. While this rule may occassionally result in
superfluous priority inversions, the IPCP still guarantees an
identical bound on worst-case pi-blocking and requires fewer
preemptions. Further, explicit maintenance of a system ceiling
is not required under the IPCP as it is implicitly represented
by the effective priority of lock-holding jobs.

Although PRIO PROTECT is implemented in Linux using
the futex API, it does not enjoy the benefits of the futex
approach. The PCP’s reliance on priority ceilings (i.e., its
anticipatory properties) are not captured in the futex API,
which means that explicit system calls are still used to raise
or lower a job’s priority, even if the lock is uncontended.

E. Multiprocessor Priority Ceiling Protocol (MPCP)

The introduction of parallelism in multiprocessor systems
adds a new dimension of complexity to real-time locking
protocols, as they now need to account for remote blocking,
where a job may be blocked by jobs executing concurrently
on other processors. Unfortunately, the analytical progress
guarantees provided by priority inheritance, which is also a
key component of the PCP, break across partition boundaries
and do not ensure bounded pi-blocking in all cases [9, 24, 25].

Rajkumar et al. proposed the Multiprocessor Priority Ceil-
ing Protocol (MPCP) [24], the first shared-memory multi-
processor real-time locking protocol. The MPCP is based on
priority boosting, where the priority of jobs in critical sections
is temporarily raised to a level higher than any used base
priority, in order to ensure the progress of lock-holding jobs
despite the lack of priority inheritance. Lock-holding jobs
cannot be preempted by newly released jobs (which have not
entered a critical section yet), but may still be preempted by
other priority-boosted jobs.

Under the MPCP, for every partition in the system, each
lock is assigned a priority ceiling, which is the highest priority
of all tasks in every other partition accessing this lock [24].
When entering a critical section, the priority of a job running
in a given partition is boosted to a value relative to the ceiling
for this partition. In the case of contention, tasks suspend and
gain access in order of decreasing base priority. That is, when a
critical section completes and the lock is released, jobs blocked
on that lock are resumed in order of priority. Deadlocks are
avoided in the MPCP by prohibiting the nesting of locks.

Locking protocols based on priority boosting are antici-
patory as they boost the priority of jobs in critical sections
to defend against possible future job releases. As untimely
future job releases may occur at any time, priority boosting
is required even when a lock is initially uncontended, which
renders the MPCP incompatible with Linux’s futex API for
reactive locking protocols.

LITMUSRT implements the MPCP using the same APIs as
the PCP. Upon opening a lock, the priority ceilings for all
partitions in the system are set up. When a job tries to acquire
the lock, its priority is boosted and an attempt is made to obtain
the lock, which is granted immediately if it is uncontended.
On contention, however, the job is added to the priority wait-
queue associated with the lock and suspended. On releasing
the lock, the unlocking job’s effective priority is restored to
the job’s base priority and the next job on the waitqueue (if
any) is resumed. As is the case with the PCP, LITMUSRT’s
MPCP implementation requires tasks to invoke system calls
even in the absence of contention.

3

F. FIFO Multiprocessor Locking Protocol (FMLP+)

The FIFO Multiprocessor Locking Protocol (FMLP+) [3,
5], a refinement of Block et al.’s original FMLP [2], is a
suspension-based anticipatory locking protocol for partitioned
scheduling with an asymptotically optimal bound on maximum
suspension-aware pi-blocking (O(n)). While the FMLP+ uses
priority boosting similar to the MPCP to ensure progress of
jobs in critical sections, the key difference is its use of FIFO
ordering both for waiting jobs and jobs executing critical
sections: under the FMLP+, jobs gain access to contended
locks in order of the time at which they issued the lock request,
and priority-boosted jobs are also scheduled in order of non-
decreasing lock-request times. Similar to the MPCP, nesting
of critical sections is forbidden, thus avoiding deadlocks.

The FMLP+ implementation in LITMUSRT differs slightly
from the MPCP implementation: no ceilings need to be
determined when opening a lock, the per-lock priority wait-
queue is replaced with a FIFO ordered wait-queue, and the
priority-boosting mechanism orders boosted jobs based on the
time at which they made the lock requests.

With the necessary background in place, we next identify
properties of the PCP, the MPCP, and the FMLP+ that
allow us to derive futex-like variants of the protocols, and
discuss our proof-of-concept implementations of the resulting
protocols in LITMUSRT, which indeed avoid involving the
kernel in the common case. We chose these protocols because
they respectively are the state-of-the-art locking protocols for
uniprocessors and partitioned multiprocessors, and because
matching non-futex implementations are available as a base-
line in LITMUSRT; however, the techniques discussed in the
following can be similarly applied to other (multiprocessor)
locking protocols as well. We begin with the simpler unipro-
cessor case in Sec. III and discuss how to apply similar
techniques to the MPCP and the FMLP+ in Sec. IV.

III. UNIPROCESSOR PROTOCOLS: PCP FUTEXES

Recall that under the PCP each lock has a priority ceiling,
and that the currently held locks define the system ceiling,
which in turn determines the outcome of lock acquisition
attempts. A global view of the state of all the locks in the
system, which is available only to the kernel, is hence required
to correctly implement the PCP. The kernel must also be
informed of lock acquisitions and releases: acquisition of a
lock, if permitted by the current system ceiling, likely raises
the system ceiling. Similarly, releasing a lock may potentially
lower the system ceiling and hence unblock waiting tasks.

However, in many cases, it is not necessary to inform the
kernel immediately, or even at all—communicating changes in
lock ownership may be safely deferred in the common case,
often to the point where they become irrelevant so that they
may be omitted entirely.

This property may be leveraged to obtain futexes with OPCP
semantics, which we argue more clearly in the following
by stating the three observations upon which our solution
rests. Similar observations were also recently made by Züpke
et al. [30] in concurrent work exploring IPCP futexes.

Observation 1. The success or failure of future lock ac-
quisitions by a particular job can be determined immediately
before it is dispatched. Recall that, in the PCP, a job may
acquire any lock only when its effective priority is greater
than the current system ceiling (or if it is the owner of the
system ceiling), regardless of the identity of the lock. Since the
PCP is a uniprocessor protocol, the system ceiling cannot be
changed by other tasks while a job is occupying the processor;
the outcome of lock operations may thus be predetermined by
the scheduler when dispatching a job. For example, although
a higher-priority job may be released at any time, which in
turn may acquire a lock and raise the system ceiling, it can do
so only after the scheduler has been invoked to preempt the
previously executing job.

Observation 2. The set of jobs blocked on the system ceiling
cannot grow while the ceiling owner is executing. Again,
since the PCP is a uniprocessor protocol, newly released jobs
can block on the system ceiling only after preempting the
previously executing job.

Observation 3. Updating the state of a lock can be deferred
until a context switch occurs. Similar to Observation 1, any
lock contention is preceded by a context switch. Hence, a
context switch is the latest time until which we can defer
communicating the state of all locks to the kernel.

From Observation 1, it is obvious that it is not necessary
to query the kernel’s permission for every lock acquisition.
From Observation 2, it follows that it is not necessary to
inform the kernel of every lock release. And finally, from
Observations 1 and 3, we conclude that any ceiling updates
can be safely deferred until the kernel is entered anyway to
enact a preemption. In particular, if a lock is acquired and
released before a preemption occurs—the common case—then
the kernel does not have to be aware of the critical section at
all. Our implementation exploits this as described next.

A. Implementing Deferred-Update Futexes (PCP-DU)

In this paper, we present futexes with classic PCP semantics
(i.e., we implement the OPCP, as opposed to the IPCP). The
advantages of the classic PCP are that it does not require
userspace processes to be aware of the ceilings of locks, which
simplifies system integration, and that it avoids superfluous
priority inversions (that may arise under the IPCP due to the
unconditional elevation of a lock holder’s effective priority).

The central data structure underlying our futex implementa-
tions, as shown in Listing 1, is a bidirectional communication
channel called a lock page (lines 3–6 in Listing 1), a per-task
shared page of memory mapped into the task’s address space,
which both the task and the kernel can read and modify.

To realize OPCP futexes, we must provide two mechanisms:
(i) a mechanism that allows userspace processes to let the ker-
nel know which locks were acquired or released between two
scheduler invocations (Observation 3), and (ii) a mechanism to
implement ceiling blocking. We now describe how both these
mechanisms are implemented using the lock page structure.

Which locks were acquired? To asynchronously inform the
kernel of lock acquisitions and releases, the lock page contains
a bitmap named locked (line 4), which tracks for each lock

4

1 #define SIZE divide_ceiling(MAX_LOCKS, BITS_PER_WORD)
2
3 struct lock_page {
4 bitmap_t locked[SIZE];
5 bool unlock_syscall;
6 } *lock_page;
7
8 void lock(int desc)
9 {

10 lock_page->locked[IDX(desc)] |= (1 << BIT(desc));
11 }
12
13 void unlock(int desc)
14 {
15 lock_page->locked[IDX(desc)] &= ˜(1 << BIT(desc));
16 if (lock_page->unlock_syscall)
17 kernel_do_unlock(desc);
18 }

Listing 1: PCP-DU-PF userspace routines. The IDX() and BIT()
functions return, for a given lock descriptor, the index of the entry
and the corresponding bit in the bitmap, respectively.

1 #define CAN_LOCK (1 << (BITS_PER_WORD - 1))
2 ...
3 void lock_bool(int desc)
4 {
5 old = lock_page->locked[IDX(desc)] | CAN_LOCK;
6 new = old | (1 << desc);
7 if (!CMPXCHG(&lock_page->locked[IDX(desc)], old, new))
8 kernel_do_lock(desc);
9 }

Listing 2: The PCP-DU-BOOL locking operation. The CMPXCHG
operation takes an address, an expected value, and a new value, and
atomically stores the new value at the address if the currently stored
value equals the expected value. The IDX() and BIT() functions
have been redefined to account for the CAN_LOCK flag.

descriptor whether the task currently holds the corresponding
lock. In accordance with Observation 3, if the lock is released
(and the corresponding bit cleared) before the scheduler is
invoked, the kernel never takes note of a critical section.

How is ceiling blocking ensured? Based on Observation 1,
when a task is dispatched, the kernel must communicate
whether the task may acquire any locks. We implemented this
mechanism in two different ways: the first method, named
PCP-DU-PF, exploits the exception handling mechanism pro-
vided by the memory management unit (MMU), while the
second approach, named PCP-DU-BOOL, uses the atomic
compare-and-exchange operation (henceforth CMPXCHG) to
decide whether the kernel should be invoked.

B. PCP-DU-PF: Ceiling Blocking with Page Faults

Under the PCP-DU-PF, the kernel uses the MMU to be
automatically notified of failed lock attempts by means of a
page fault. To this end, the kernel remaps the lock page as a
read-only page if the task is not allowed to acquire locks. Lock
acquisition thus consists simply of attempting to write a bit to
the locked bitmap array (see line 11 in Listing 1). The lock
is acquired when this write operation succeeds, otherwise an
access violation fault is triggered, which allows the kernel to
block the requesting process while letting the current ceiling
owner inherit the blocked task’s priority.

When releasing a lock, two cases are possible: if no other
tasks are blocked on the system ceiling, then simply clearing
the corresponding bit in locked is sufficient (line 15).
Otherwise, the kernel should be invoked to resume all tasks
with priorities now exceeding the new system ceiling (if any).
Based on Observation 2, the kernel communicates whether
there are any existing waiters before scheduling a job using
the unlock_syscall flag in the lock page (line 5).

Note that checking the unlock_syscall flag (line 16)
and invoking the kernel (line 17) is not atomic. In the rare
case of a change in the unlock_syscall field due to
a preemption occurring between the two steps, the kernel
may unnecessarily be invoked, which causes some avoidable
overhead, but does not result in incorrect behavior.

As a final corner case, the lock release operation may find
the lock page to be unwritable, which can occur if a higher-
priority job is released, acquires a lock (raising the system
ceiling), and then self-suspends. In this case, a page fault is
triggered in line 15 and the releasing job is simply blocked
until the ceiling is lowered, after which the unlock operation
is completed, which is compliant with OPCP semantics.

In our implementation, the lock page does not reveal which
acquired lock(s) define the current system ceiling. In the case
of contended nested locks, it may happen that a nested lock
release does not lead to a lowering of the system ceiling, which
results in a superfluous system call. However, accounting for
this corner case defeats the primary goal of futexes: the more
complex logic required would increase both the average- and
worst-case locking overheads in return for slightly improved
efficiency in an uncommon case.

The key advantage of PCP-DU-PF is that there are no
atomic operations or branches in the (frequently executed)
lock acquisition code (lines 8–11), which only unconditionally
updates a single word of memory, at the expense of incurring
a page fault in the (relatively rare) case of ceiling blocking.

C. PCP-DU-BOOL: Checking the Ceiling with CMPXCHG

Our second approach, named PCP-DU-BOOL, does not use
the MMU, but instead relies on explicitly setting a flag in a
task’s lock page prior to dispatching it to indicate whether
locks may be acquired. However, the checking of this flag and
the acquisition of a lock must now be carried out atomically,
since a preemption between the two steps could otherwise
result in a time-of-check-to-time-of-use race condition.

In our implementation, the required atomicity is realized
with an atomic CMPXCHG operation, as shown in Listing 2.
Since in most conventional architectures CMPXCHG operates
only on individual words, the format of the locked array
is slightly changed: a single bit, named CAN_LOCK bit, is
reserved in every word comprising the locked bitmap. As
implied by the name, the CAN_LOCK flag specifies whether
locks may be acquired or not, and it is replicated across the
locked array so that it may be queried within a CMPXCHG
operation when updating any bit. This is apparent in lines 5–
7 of Listing 2, which together ensure that the CMPXCHG
operation on line 7 fails if the CAN_LOCK flag is unset.

5

The unlocking code remains conceptually unchanged. The
advantage of the PCP-DU-BOOL variant is that it avoids page
faults, at the expense of requiring an atomic operation as part
of every lock acquisition operation, and an additional branch
when the lock is contended.

IV. MULTIPROCESSOR PROTOCOLS: MPCP AND FMLP+

Supporting the MPCP and the FMLP+ may appear to
be slightly more difficult due to (i) remote blocking, which
prevents us from deferring the update of a lock’s state until
the next context switch, (ii) priority boosting, which should
take effect even if no contention is initially encountered, and
(iii) since, in the case of the FMLP+, boosting depends on the
time at which a request is issued (which seemingly indicates
that the kernel must always be notified of lock acquisitions).
In fact, there is a simple solution for each of these issues.

Concerning (i), lock acquisitions must be immediately glob-
ally visible since locks may be requested concurrently from
remote processors. We thus simply adopt Linux’s approach and
use atomic operations to let tasks acquire and release locks in
userpace, which implies that each lock’s state must be stored
in shared memory visible to all tasks sharing a lock.

Concerning (ii), we observe that whether a task executes
with an elevated priority is relevant only to the local scheduler,
which implies that the priority boosting of critical sections can
be deferred until the next context switch, just as it is the case
with system ceiling updates in the PCP-DU variants.

Finally, concerning (iii), it may seem that the kernel must
know of every lock acquisition under the FMLP+, or that tasks
at least need to provide a suitably accurate timestamp in the
lock page. Fortunately, the recording of the timestamp can
actually be safely deferred until the next context switch, too.

We discuss this observation in more detail in Sec. IV-B,
after first introducing the simpler MPCP-DU, which realizes
futexes with MPCP semantics.

A. The MPCP with Deferred Updates (MPCP-DU)

Listing 3 shows the pseudocode for MPCP-DU. Similar to
the PCP-DU variants, the multiprocessor implementations use
a shared lock page. We must provide two key mechanisms to
implement futexes for the MPCP: (i) the scheduler needs to
detect whether the currently executing task is priority boosted,
and (ii) the executing task needs a way to detect when remote
jobs are blocked on a lock.

Deferring priority boosting. Similar to the PCP-DU vari-
ants, we use a bitmap in the lock page (called boost, line 4 in
Listing 3) that specifies whether a particular lock is currently
being held by the task (updated in lines 10 and 22). We
chose to use a bitmap for this purpose since the MPCP-DU
and FMLP+-DU implementations are layered on top of the
common PCP-DU code in our prototype. However, since
nested lock acquisitions are disallowed under both the MPCP
and FMLP+, one could also just record the descriptor of the
currently held lock in an integer field in the lock page.

Note that it is insufficient under the MPCP to simply
communicate that the current task is priority-boosted; rather, it

1 #define SIZE divide_ceiling(MAX_LOCKS, BITS_PER_WORD)
2 int counter[MAX_LOCKS]; /* shared among all tasks */
3 struct lock_page {
4 bitmap boost[SIZE];
5 bool unlock_syscall;
6 } *lock_page; /* private per-task state */
7
8 void lock(int desc)
9 {

10 lock_page->boost[IDX(desc)] |= (1 << BIT(desc));
11 old = atomic_inc(&counter[desc]);
12 if (old > 0)
13 kernel_do_lock(desc);
14 }
15
16 void unlock(int desc)
17 {
18 old = atomic_dec(&counter[desc]);
19 if (old != 1) {
20 kernel_do_unlock(desc);
21 } else {
22 lock_page->boost[IDX(desc)] &= ˜(1 << BIT(desc));
23 if (lock_page->unlock_syscall)
24 sched_yield();
25 }
26 }

Listing 3: MPCP-DU/FMLP+-DU userspace routines. The IDX()
and BIT() functions are defined as in Listing 1.

is also required to communicate which lock it currently holds
so that the scheduler may infer the correct ceiling priority.

An alternative design would be to explicitly set the current
priority (e.g., see [30]); however, this requires each task to be
aware of the priority ceilings of all resources that it accesses,
which complicates system integration. In LITMUSRT, the
ceiling is instead dynamically determined by the kernel [7].

Tracking remote blocking. A shared atomic counter is
used to signal that remote jobs are blocked on a given lock.
In Listing 3, these counters are shown as a shared array of
lock states (line 2); however, it is equally possible to embed
each counter in other shared data structures. Atomic increment
and decrement operations (which return the previously stored
value) are used to count the number of (remote and local) tasks
currently contending for a lock (lines 11 and 18). This enables
tasks to invoke the kernel only when the lock is contended
(lines 12 and 19), just as it is the case with Linux’s existing
futex API (recall Sec. II-A).

However, even when no remote blockers are present, there
may still be local tasks with a higher effective priority waiting
to preempt the task under the MPCP (this case is not covered
by Linux’s futex API for reactive locking protocols). In the
MPCP-DU, the presence of waiting higher-priority local tasks
is indicated using the unlock_syscall flag in the lock
page, which is checked each time a task unlocks a resource
(lines 23–24), just as in the PCP-DU variants.

B. The FMLP+ with Deferred Updates (FMLP+-DU)

Our implemention of futexes with FMLP+ semantics, de-
noted FMLP+-DU, resembles in large parts the MPCP-DU, but
needs to address two additional exceptions.

Ensuring request-time ordering. Recall from Sec. II-F
that, under the FMLP+, priority-boosted processes are ordered

6

based on the time at which they requested the currently
held lock (and not the time of acquisition, as in the orig-
inal FMLP [2, 7] for partitioned schedulers). In the non-
futex baseline implementation of the FMLP+ in LITMUSRT,
the required timestamp is simply obtained from the high-
resolution clock that is also used for scheduling. However,
this poses a challenge in the context of the FMLP+-DU: the
kernel’s accurate clock is unavailable to userspace processes,
and invoking the kernel to acquire a current timestamp is
fundamentally in conflict with the futex philosophy. Instead,
our solution is based on the the following observation.

Observation 4. The relative order of local timestamps
remains unchanged if reading the clock is deferred until the
next context switch. Since a task’s effective priority is relevant
only to the local scheduler, and since other local tasks cannot
issue requests while a job is scheduled, it is sufficient to obtain
a timestamp only when the scheduler is invoked anyway.

Therefore, just like in the MPCP-DU, the effective priority
of a task is not determined until it is actually interrupted by
the scheduler. This enables us to realize futexes with FMLP+

semantics, and further has the benefit that in the common case,
in which a job acquires and releases a lock without the kernel
taking note of it, the clock readout is omitted entirely.

However, there exists one corner case, as discussed next.
Dealing with repeated acquisitions. Unknown to the

kernel, a lock may be released and re-acquired multiple
times while a job is scheduled. In particular, if a previously
preempted job already holds a lock when it is dispatched,
and if that lock is also held by the job the next time it
is interrupted by the scheduler, then the kernel cannot infer
from the simple boost bitmap in the lock page whether
the lock was held continuously or whether it was released
and reacquired. However, it is crucial to distinguish between
the two cases in order to determine the appropriate effective
priority (i.e., to check if a new lock-request timestamp should
be associated with the task).

As a solution, under the FMLP+-DU, an unlocked flag
can be added to each lock page, which is set by the task each
time after it releases a lock, indicating to the scheduler that at
least one unlock operation occurred. The flag is cleared by the
scheduler each time it dispatches a task. As a result, under the
assumption that locks are not nested (as defined in the FMLP+

specification), the kernel can trivially detect that a lock was
released and reacquired from the fact that the unlocked flag
was set by the task.

C. Further Optimizations

In addition to the presented general techniques, we have
identified two system-specific optimizations in the MPCP and
the FMLP+ implementations in LITMUSRT that improve
performance in both the average and the worst case. As these
improvements are applicable to both the futex and the baseline
non-futex implementations, we discuss them separately.

Avoiding transitive spin delays. In the implementations of
the FMLP+, MPCP, FMLP+-DU, and the MPCP-DU, the state
of each per-lock wait-queue is protected with a spinlock. In the
baseline implementations, in the contented case, this spinlock

is held during unlock operations while (one of) the blocked
task(s) is resumed with Linux’s wake_up_task() function.
However, we have observed that wake_up_task() can take
several thousand cycles to complete (likely due to contention
for remote runqueue locks). By moving the call to this routine
outside of the wait-queue critical section, transitive spin delays
via the wait-queue locks are avoided, which reduces the
overheads of contended lock acquisitions.

Avoiding the scheduler clock. In the baseline FMLP+

implementation, a task’s effective priority is determined with
the scheduler’s high-resolution clock. However, depending on
the underlying hardware platform, accessing this clock may
incur non-trivial overheads on the order of dozens to hundreds
of cycles (e.g., when accessing off-chip clock devices).

Recall from Observation 4 that only the relative order
of local timestamps is relevant under the FMLP+. We can
thus replace the clock-based timestamp with a per-processor
counter (i.e., a “logical clock”) that is incremented each time a
timestamp is taken. This eliminates a large part of the overhead
associated with priority-boosting tasks under the FMLP+.

V. EXPERIMENTS AND RESULTS

We evaluated the four proposed futex implementations
(PCP-DU-PF, PCP-DU-BOOL, MPCP-DU, and FMLP+-DU)
by comparing them against the two standard Linux pro-
tocols PRIO INHERIT and PRIO PROTECT, the existing
LITMUSRT implementations of the PCP, the MPCP, and the
FMLP+, and also against two new implementations of the
MPCP and FMLP+, denoted MPCP-NEW and FMLP+-NEW,
that include the optimizations proposed in Sec. IV-C.

All experiments were conducted in LITMUSRT 2013.1
(based on Linux 3.10.5) running on a Boundary Devices
Sabre Lite ARMv7 development board, which is based on
the FreeScale I.MX6Q SoC, an ARM Cortex-A9 quad-core
system running at 1GHz. Several bugfixes and ARM-specific
spinlock performance improvements were backported into the
2013.1 tree from LITMUSRT 2014.1 and Linux 3.13, respec-
tively. The kernel was compiled to the Thumb-2 instruction
set and all kernel debugging options were disabled.

In our experiments, we investigated the following questions:
(i) How do the overheads of our implementations compare
with those of the original protocols in the uncontended case?
(ii) What additional overheads are introduced by the futex-
based approach and does it increase the worst-case overheads?
(iii) Does the PCP-DU-PF tradeoff—avoiding atomic opera-
tions in the uncontended case at the expense of page faults in
the contended case—pay off in Linux?

To answer these questions, we implemented microbench-
marks that measure lock and unlock overheads with the
processor’s cycle counter, as discussed in the following.

A. Microbenchmarking Methodology

Our test driver spawns several real-time threads, each of
which lock and unlock a single shared resource once every
period. Threads were randomly assigned a critical section
length in the range of 25–45µs, an execution time in the range
of 25–65µs, and a period in the range of 600–800µs. These

7

PCP MPCP-NEW FMLP+-NEW

Type
Lock (Avg) 263 (-59%) 1,604 (+149%) 645 160 (-75%) 171 (-73%) 1,075 (-1%) 1,091 214 (-80%) 1,363 (+31%) 1,041 215 (-79%)

Lock (99%) 464 (-65%) 2,236 (+70%) 1,313 661 (-50%) 453 (-65%) 1,928 (-3%) 1,992 591 (-70%) 2,209 (+15%) 1,921 653 (-66%)
Lock (Max) 7,707 (+100%) 33,271 (+764%) 3,850 2,384 (-38%) 1,974 (-49%) 5,875 (-10%) 6,506 2,477 (-62%) 7,491 (-5%) 7,906 2,625 (-67%)

Unlock(Avg) 301 (-75%) 1,221 (+1%) 1,211 87 (-93%) 92 (-92%) 1,216 (+6%) 1,149 177 (-85%) 1,181 (+6%) 1,117 174 (-84%)
Unlock(99%) 495 (-74%) 2,001 (+4%) 1,927 197 (-90%) 204 (-89%) 1,757 (+3%) 1,709 285 (-83%) 1,716 (+7%) 1,597 279 (-83%)
Unlock(Max) 7,786 (+17%) 9,027 (+36%) 6,655 1,770 (-73%) 1,653 (-75%) 7,330 (+19%) 6,158 1,920 (-69%) 6,574 (+24%) 5,292 1,875 (-65%)

Lock (Avg) 4,955 (+152%) 1,967 4,625 (+135%) 2,673 (+36%) 1,266 (+4%) 1,216 1,097 (-10%) 1,441 (+31%) 1,096 1,059 (-3%)
Lock (99%) 6,392 (+128%) 2,803 6,317 (+125%) 3,818 (+36%) 2,356 (+7%) 2,201 2,120 (-4%) 2,504 (+20%) 2,080 2,064 (-1%)
Lock (Max) 13,252 (+67%) 7,953 14,820 (+86%) 10,880 (+37%) 12,242 (+95%) 6,281 5,392 (-14%) 13,109 (+118%) 6,026 5,570 (-8%)

Unlock(Avg) 3,764 (-8%) 4,109 5,148 (+25%) 4,868 (+18%) 4,301 (+0%) 4,280 2,657 (-38%) 4,203 (+1%) 4,166 2,335 (-44%)
Unlock(99%) 6,784 (+16%) 5,867 7,213 (+23%) 6,889 (+17%) 7,810 (+0%) 7,784 7,184 (-8%) 8,061 (+5%) 7,680 6,524 (-15%)
Unlock(Max) 15,772 (+6%) 14,919 15,985 (+7%) 15,787 (+6%) 20,482 (-5%) 21,657 18,258 (-16%) 21,223 (-5%) 22,451 17,991 (-20%)

—
—
—
—
—

PRIO_INH PRIO_PROT PCP-DU-PF PCP-DU-BOOL MPCP-ORIG MPCP-DU FMLP+-ORIG FMLP+-DU

—

Samples: 6,600,000 per protocol

Samples: 900,000 per protocol

Samples: 12,200,000 per protocol

Samples: 2,100,000 per protocol

Uncontended Case

Contended Case

Table 1: Observed average, 99th percentile, and maximum overheads for lock acquisition and release operations under each of the considered
protocols. The table reports both absolute values (in processor cycles) and change relative to a baseline (the PCP for uniprocessor protocols,
the FMLP+-NEW for multiprocessor protocols). Explicit contention does not arise under PRIO PROTECT in our experimental setup.

parameters were chosen to simulate a demanding workload
with a large number of lock acquisitions per second (i.e., the
type of workload that likely benefits from the futex approach).

Five threads were spawned for the uniprocessor proto-
cols, while for the multiprocessor protocols, six threads were
spawned across three cores. (One core was reserved for tracing
and control tasks.) A cache-polluting loop was executed during
and around the critical sections to generate cache pressure.

Lock/unlock samples were obtained by reading the pro-
cessor’s cycle counter before and after each operation in
userspace, and also when resuming and suspending tasks in
the kernel, which allowed in a post-processing step to exclude
the time the task was suspended (if at all). Additionally, since
our futex protocols require additional checks each time a task
is dispatched, we also recorded scheduling overheads using
LITMUSRT’s standard overhead tracing facilities [3]. In each
run, samples were collected for an interval of five seconds.
We conducted 300 runs for each of the eleven protocols, for
a total of 275 minutes of traced execution.

To allow an unbiased comparison of the observed maxima,
we normalized the sample sizes within each class of protocols
(uniprocessor and multiprocesssor) and with respect to each
operation by randomly discarding samples from the data
sets. The observed average, 99th percentile, and maximum
overheads, along with the final data set sizes, are listed in Table
1. The percentages in parentheses denote the relative change in
overhead in comparison to the baseline implementation. The
baseline for both uniprocessor implementations (PCP-DU-PF
and PCP-DU-BOOL) is the PCP, while the MPCP-NEW and
the FMLP+-NEW are the baselines for the MPCP-DU and the
FMLP+ respectively. (MPCP-ORIG and FMLP+-ORIG de-
note the existing, unoptimized LITMUSRT implementations.)

We first consider the overheads in the uncontended case.

B. Uncontended-Case Overhead Reduction

As expected, the futex approach results in significant over-
head reductions, which is apparent for each of the proposed
protocols. As can be seen in Table 1, in the uncontended case,
the overhead of the futex-based implementations compared to
the respective baselines shows substantial overhead reductions

in the range of 73%–93% in the average case, still in the
range of 50%–90% in terms 99th percentile overheads, and
38%–75% in terms of maximum observed overheads.

For example, both the PCP-DU-PF and the PCP-DU-BOOL
require only around 90 cycles for an uncontended unlock op-
eration on average, whereas the original PCP implementation
requires about 1,211 cycles on average—a more than 13x re-
duction in overheads. In general, the observed large reduction
in uncontended-case overheads is a direct consequence of the
futex approach and thus validates our designs.

Interestingly, both PCP-DU variants exhibit lower average
and maximum overheads than Linux’s futex implementation
(PRIO INHERIT), and LITMUSRT’s PCP implementation
exhibits lower overheads than Linux’s non-futex IPCP imple-
mentation (PRIO PROTECT), which suggests that the proto-
type implementations in LITMUSRT are reasonably efficient.

C. Contended-Case Overhead Penalty

Next, we consider the increase in contended-case overheads,
which is a result of the additional checks and scheduling logic
required in our futex protocols. Interestingly, different trends
manifested in the uni- and multiprocessor cases.

In the uniprocessor case, both PCP-DU variants exhibit
a noticeable increase in contended-case lock acquisition and
release overheads. The extreme case is the PCP-DU-PF, which
exhibits a 135% increase in lock acquisition overheads in
the average case, and still an 86% increase in terms of the
observed maximum overheads (an increase to 14820 cycles
from 7953 cycles under the PCP). We attribute this large
increase to the complex logic and locking scheme in Linux’s
page-fault handler, which is not optimized for our futex
implementation. A more lightweight kernel might, however,
find the PCP-DU-PF more suitable given the large overhead
reduction in the uncontended case.

The PCP-DU-BOOL exhibits a more modest increase in
contended-case overheads of 36%–37% for lock acquisitions,
and 6%–18% for lock releases. While this increase is larger
than we expected, the PCP-DU-BOOL’s overheads are never-
theless still comparable to those of Linux’s PRIO INHERIT
implementation. (No overheads are reported for the contended

8

case under the PRIO PROTECT because no explicit con-
tention arises under the IPCP unless lock-holding tasks self-
suspend.) The large unconteded-case overhead reduction can
thus still be expected to be beneficial to workloads that can
tolerate the increase in contended-case overheads.

The multiprocessor case paints a more positive picture, but
also one that is more suprising: the contended-case overheads
decreased under the MPCP-DU and FMLP+-DU compared
to their respective baselines. This is a positive outcome, as
it shows that there is at least no undesirable increase in
overheads. However, from an inspection of the code, there
is also no apparent reason for why the overheads might have
decreased at all. In fact, from first principles, we expected a
largely unchanged overhead distribution.

After a careful analysis and additional tracing, we concluded
that the apparent overhead reduction is simply a consequence,
or rather an artifact, of the measurement-based methodology:
as the introduction of the futex fast-path reduces the contention
for the in-kernel wait-queue spinlocks, observing samples
close to the worst case becomes less likely given an equal
number of samples. That is, even in the contended case, the
futex approach inherently biases the measurements away from
the extremum. Unfortunately, this is an inherent limitation of
a measurement-based evaluation; it would thus be worthwhile
to reassess the costs of our futex protocols in the context of
systems in which true worst-case overheads are determined
using static worst-case execution time analysis.

Nonetheless, our results substantiate the benefits of applying
the futex approach to multiprocessor real-time locking proto-
cols in Linux and other complex Linux-like systems, for which
no static timing analysis is currently available.

D. Scheduler Overheads

Finally, due to the added checks required each time that a
task is dispatched, a possible increase in scheduling overhead
must also be taken into account. Fig. 1 depicts the cumulative
distribution of the observed scheduling overhead samples
under each of the LITMUSRT-based protocols (16,000,000
samples per protocol). Fig. 1(a) depicts the uniprocessor case,
which shows that the scheduling overhead is similar under the
PCP-DU-BOOL and the PCP-DU-PF, even though the latter
requires flushing the lock page’s TLB entry when the locking
permission changes. Compared to the baseline, both PCP-DU
variants incur a fixed additional overhead of around 700 cycles,
as indicated by the identical, but shifted shape of all curves.

Fig. 1(b) shows the multiprocessor case, where the
MPCP-DU incurs generally more overhead in the scheduler
than the FMLP+-DU. This is because the MPCP-DU inserts
tasks into a priority queue, which is more costly than append-
ing a task to a FIFO queue, and also since the MPCP-DU
must lookup the proper priority ceiling in order to calculate
the boosted priority, whereas FMLP+-DU simply uses a logical
timestamp. Overall, compared to the baselines, the FMLP+-DU
and the MPCP-DU incur a scheduling overhead of approxi-
mately 400 and 650 cycles, respectively.

Notably, in both the uni- and the multiprocessor cases,
the added scheduling overhead is considerably less than the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
D

F
 (

in
 p

e
rc

e
n
t)

Cycles

PCP
PCP-DU-PF

PCP-DU-BOOL

(a) Uniprocessor protocols. The curves of the two PCP-DU variants overlap.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
D

F
 (

in
 p

e
rc

e
n
t)

Cycles

MPCP
MPCP-DU

FMLP+
FMLP+-DU

(b) Multiprocessor protocols. The MPCP and the FMLP+ curves overlap.

Fig. 1. Cumulative distributions of the observed scheduling overhead

number of cycles saved on a single uncontended critical
section, which shows that the futex approach does indeed yield
net savings for locking-intensive, low-contention workloads.

VI. RELATED WORK

The priority-inversion problem in real-time systems has
been studied extensively, primarily from an algorithmic point
of view, on both uniprocessors [1, 27] and multiprocessors
(e.g., [2, 3, 5, 8, 12, 18, 20, 23, 24]); see [3, 5, 12] for recent
surveys. While several prior studies have considered overheads
in suspension-based locking protocols [3, 4, 10, 17, 22], these
studies have considered non-futex implementations [3, 4, 10]
or used systems without a kernel/userspace separation [17, 22],
where mode-switching overheads do not arise.

Mode-switching overheads also do not arise when using spin
locks in userspace. However, to avoid excessive spin delays, it
is necessary to either react to the preemption of lock-holding
tasks [19], or to prevent it entirely (with non-preemptive
sections) [17, 18]. To enable the latter, LITMUSRT has long
supported low-overhead non-preemptive sections by means of
a flag in memory between userspace and the kernel [3, 10],
which inspired the use of the lock page in our protocols.

While a discussion of the relative merits of spin- and
suspension-based synchronization is beyond the scope of this
paper (e.g., see [3, 10, 12, 17, 20]), it is interesting to note that,
at a high level, the futex approach [16] can be understood as an
attempt to realize (at least in the common case) one of the key
advantages of spin-based protocols, namely the avoidance of
mode-switches, while preserving the semantics and analytical
properties of suspension-based protocols.

As already discussed in Sec. II-A, Franke et al. [16] were
the first to present an implementation of futexes in the Linux

9

kernel. A detailed explanation of the futex API exposed by
the Linux kernel, as well as how it can be used to build syn-
chronization primitives, is provided by Drepper [15]. Interest-
ingly, a conceptually similar, but less flexible implementation
appeared previously in BeOS [26].

Züpke’s work [29] on deterministic futexes targets the
problem of providing a futex implementation in embedded
separation kernels (i.e., kernels that implement strict space
and time partitioning). Züpke identifies problems with the
applicability of the Linux approach, and proposes a method
to implement futexes without the need for a kernel memory
allocator. In subsequent work, Züpke et al. [30] proposed two
implementations of futexes with IPCP semantics and evaluated
their overheads. (Züpke et al. [30] also mention that such
“fast” IPCP variants have been used in commercial RTOSs
such as PikeOS [30] for a number of years.) Note that, in
contrast to Züpke et al.’s work [30], our implementation
realizes the classic PCP (i.e., the OPCP), which minimizes
priority inversion at runtime. Nonetheless, our implementation
could be easily changed to implement IPCP semantics as well.

To the best of our knowledge, this is the first paper to present
implementations and an evaluation of average-case-optimized
versions of multiprocessor real-time locking protocols for
partitioned schedulers.

VII. CONCLUSION

This paper demonstrates that the Linux kernel’s futex ap-
proach [16] to constructing locking protocols—wherein ex-
pensive system calls are avoided when locks are uncontended,
and which previously had been applied only to a reactive real-
time locking protocol, namely the PIP—can be extended to an-
ticipatory real-time locking protocols with stronger analytical
properties such as the PCP, the MPCP, and the FMLP+.

As expected, in an evaluation of our prototype implemen-
tations in LITMUSRT, we observed a substantial reduction
in average- and worst-case overheads in the uncontended
case (e.g., the average cost of unlocking a semaphore un-
der the PCP-DU-BOOL is 92% lower than in the baseline
PCP implementation). However, we also observed increased
worst-case overheads for some operations (e.g., the maximum
overhead under the PCP-DU-BOOL increased by 37%). While
the latter is higher than we initially expected, it is no worse
than Linux’s existing PRIO INHERIT futexes. Overall, due to
the significant improvement in the uncontended case, futexes
remain an attractive choice for workloads that can tolerate
the increase in worst-case overheads. In particular, we believe
that the improvements in common-case locking overheads are
useful for the vast majority of predominantly soft real-time
applications deployed on Linux and Linux-like platforms.

In future work, it would be interesting to investigate whether
the increase in worst-case overheads can be avoided entirely
with further optimizations. Further, it would be worthwhile
to reassess the costs and benefits of futexes in the context of
systems in which worst-case overheads are determined using
static worst-case execution time analysis.

Acknowledgement. We thank Dr. Al Grant of ARM Ltd.
for providing us with access to CoreSight tracing tools.

REFERENCES
[1] T.P. Baker. Stack-based scheduling of realtime processes. Real-Time

Systems, 3(1):67–99, 1991.
[2] A. Block, H. Leontyev, B.B. Brandenburg, and J.H. Anderson. A flexible

real-time locking protocol for multiprocessors. In RTCSA’07, 2007.
[3] B.B. Brandenburg. Scheduling and Locking in Multiprocessor Real-

Time Operating Systems. PhD thesis, The University of North Carolina
at Chapel Hill, 2011.

[4] B.B. Brandenburg. Improved analysis and evaluation of real-time
semaphore protocols for P-FP scheduling. In RTAS’13, 2013.

[5] B.B. Brandenburg. The FMLP+: An asymptotically optimal real-time
locking protocol for suspension-aware analysis. In ECRTS’14, 2014.

[6] B.B. Brandenburg and J.H. Anderson. Feather-trace: A light-weight
event tracing toolkit. In OSPERT’07, 2007.

[7] B.B. Brandenburg and J.H. Anderson. An implementation of the PCP,
SRP, D-PCP, M-PCP, and FMLP real-time synchronization protocols in
LITMUSRT. In RTCSA’08, 2008.

[8] B.B. Brandenburg and J.H. Anderson. Optimality results for multipro-
cessor real-time locking. In RTSS’10, 2010.

[9] B.B. Brandenburg and J.H. Anderson. Real-time resource-sharing under
clustered scheduling: mutex, reader-writer, and k-exclusion locks. In
EMSOFT’11, 2011.

[10] B.B. Brandenburg, J.M. Calandrino, A. Block, H. Leontyev, and J.H.
Anderson. Real-time synchronization on multiprocessors: To block or
not to block, to suspend or spin? In RTAS ’08, 2008.

[11] A. Burns and A.J. Wellings. Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX. Pearson
Education, 2001.

[12] A. Burns and A.J. Wellings. A schedulability compatible multiprocessor
resource sharing protocol — MrsP. In ECRTS’13, 2013.

[13] J.M. Calandrino, H. Leontyev, A. Block, U.C. Devi, and J.H. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multipro-
cessor schedulers. In RTSS’06, 2006.

[14] S.K. Dhall and C.L. Liu. On a real-time scheduling problem. Operations
Research, 26(1), 1978.

[15] U. Drepper. Futexes are tricky. Available at http://www.akkadia.org/
drepper/futex.pdf, 2005.

[16] H. Franke, R. Russell, and M. Kirkwood. Fuss, Futexes and Furwocks:
Fast userlevel locking in Linux. In Ottawa Linux Symposium, 2002.

[17] P. Gai, M. di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca.
A comparison of MPCP and MSRP when sharing resources in the Janus
multiple processor on a chip platform. In RTAS’03, 2003.

[18] P. Gai, G. Lipari, and M.D. Natale. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In
RTSS ’01. IEEE, 2001.

[19] L.I. Kontothanassis, R.W. Wisniewski, and M.L. Scott. Scheduler-
conscious synchronization. ACM Transactions on Computer Systems,
15(1):3–40, 1997.

[20] K. Lakshmanan, D. Niz, and R. Rajkumar. Coordinated task scheduling,
allocation and synchronization on multiprocessors. In RTSS’09, 2009.

[21] A. Mok. Fundamental Design Problems of Distributed Systems for the
Hard-Real-Time Environment. PhD thesis, Massachusetts Institute of
Technology, 1983.

[22] R. Müller, D. Danner, W. Schröder-Preikschat, and D. Lohmann. MULTI
SLOTH: An efficient multi-core RTOS using hardware-based schedul-
ing. In ECRTS’14, 2014.

[23] F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-time
systems on multi-cores with shared resources. In ECRTS’11, 2011.

[24] R. Rajkumar. Real-time synchronization protocols for shared memory
multiprocessors. In ICDCS’90, 1990.

[25] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-
tance Approach. 1991.

[26] B. Schillings. Be engineering insights: Benaphores. Be Newsletters,
1(26), 1996. Archived copy available at http://www.haiku-os.org/
legacy-docs/benewsletter/Issue1-26.html.

[27] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols:
an approach to real-time synchronization. IEEE Transactions on Com-
puters, 39(9), 1990.

[28] T.S. Taft and R.A. Duff. Ada 95 Reference Manual. Language and
Standard Libraries: International Standard ISO/IEC 8652: 1995 (E),
volume 8652. Springer, 1997.

[29] A. Züpke. Deterministic fast user space synchronization. In OSPERT’13,
2013.

[30] A. Züpke, M. Bommert, and R. Kaiser. Fast user space priority
switching. In OSPERT’14, 2014.

10

http://www.akkadia.org/drepper/futex.pdf
http://www.akkadia.org/drepper/futex.pdf
http://www.haiku-os.org/legacy-docs/benewsletter/Issue1-26.html
http://www.haiku-os.org/legacy-docs/benewsletter/Issue1-26.html

	Introduction
	Background and Definitions
	Futexes in Linux
	Locking in LITMUSRT
	Priority Inheritance Protocol (PIP)
	Priority Ceiling Protocol (PCP)
	Multiprocessor Priority Ceiling Protocol (MPCP)
	FIFO Multiprocessor Locking Protocol (FMLP+)

	Uniprocessor Protocols: PCP Futexes
	Implementing Deferred-Update Futexes (PCP-DU)
	PCP-DU-PF: Ceiling Blocking with Page Faults
	PCP-DU-BOOL: Checking the Ceiling with CMPXCHG

	Multiprocessor Protocols: MPCP and FMLP+
	The MPCP with Deferred Updates (MPCP-DU)
	The FMLP+ with Deferred Updates (FMLP+-DU)
	Further Optimizations

	Experiments and Results
	Microbenchmarking Methodology
	Uncontended-Case Overhead Reduction
	Contended-Case Overhead Penalty
	Scheduler Overheads

	Related work
	Conclusion

