
Multiprocessor Real-Time Scheduling with Arbitrary
Processor Affinities: From Practice to Theory

Arpan Gujarati · Felipe Cerqueira · Björn B. Brandenburg

Abstract Contemporary multiprocessor real-time operating systems, such as VxWorks,
LynxOS, QNX, and real-time variants of Linux, allow a process to have an arbitrary processor
affinity, that is, a process may be pinned to an arbitrary subset of the processors in the system.
Placing such a hard constraint on process migrations can help to improve cache performance
of specific multi-threaded applications, achieve isolation among applications, and aid in load-
balancing. However, to date, the lack of schedulability analysis for such systems prevents the
use of arbitrary processor affinities in predictable hard real-time systems.

This paper presents the first analysis of multiprocessor scheduling with arbitrary processor
affinities from a real-time perspective. It is shown that job-level fixed-priority scheduling with
arbitrary processor affinities is strictly more general than global, clustered, and partitioned
job-level fixed-priority scheduling combined. Concerning the more general case of job-
level dynamic priorities, it is shown that global and clustered scheduling are equivalent to
multiprocessor real-time scheduling with arbitrary processor affinities.

The Linux push and pull scheduler is studied as a reference implementation and two
approaches for the schedulability analysis of hard real-time tasks with arbitrary processor
affinity masks are presented. In the first approach, the scheduling problem is reduced to
“global-like” sub-problems to which existing global schedulability tests can be applied. The
second approach is specifically based on response-time analysis and models the response-time
computation as a linear optimization problem. The latter linear-programming-based approach
has better runtime complexity than the former reduction-based approach. Schedulability
experiments show the proposed techniques to be effective.

1 Introduction

As multicore systems have become the standard computing platform in many domains,
the question of how to efficiently exploit the available hardware parallelism for real-time
workloads has gained importance. In particular, the problem of scheduling multiprocessor

This paper is an extended version of a prior ECRTS 2013 paper. The extensions and new contributions are
summarized in Section 1.1.

A. Gujarati · F. Cerqueira · B.B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)
Paul-Ehrlich-Straße G26, D-67663 Kaiserslautern, Germany.
E-mail: {arpanbg, felipec, bbb}@mpi-sws.org

2 Arpan Gujarati et al.

real-time systems has received considerable attention over the past decade and various
scheduling algorithms have been proposed.

One of the main dimensions along which these real-time scheduling algorithms for
multiprocessors are classified in the literature (reviewed in Section 1.2) is the permitted degree
of migration. Global and partitioned scheduling represent two extremes of this spectrum.
Under global scheduling, the scheduler dynamically dispatches ready tasks to different
processors from a single queue in the order of their priorities, whereas under partitioned
scheduling, each task is statically assigned to a single processor, and each processor is then
scheduled independently. Researchers have also studied hybrid approaches in detail. One
notable hybrid approach is clustered scheduling, under which processors are grouped into
disjoint clusters, each task is statically assigned to a single cluster, and a “global” scheduling
policy is applied within each cluster.

Interestingly, many contemporary multiprocessor real-time operating systems, such as
VxWorks, LynxOS, QNX, and real-time variants of Linux, do not actually implement the
schedulers as described in the literature. Instead, they use the concept of processor affinity
to implement a more flexible migration strategy. For example, Linux provides the system
call sched setaffinity(), which allows the processor affinity of a process or a thread to
be specified, with the interpretation that the process (or the thread) may not execute on any
processor that is not part of its processor affinity. That is, processor affinities allow binding a
process to an arbitrary subset of processors in the system, in the sense that a process can only
migrate to (or be scheduled on) the processors that it is bound to.

Processor affinities are commonly used to boost application performance in throughput-
oriented computing and to completely isolate real-time applications from non-real-time
applications by assigning them to different cores (see Markatos and LeBlanc, 1992; Salehi
et al, 1995; Alfieri, 1998; Foong et al, 2004, 2005; Jang and Jin, 2009). With processor
affinities, it is also possible to address specific requirements of individual tasks. For example,
cache-sensitive tasks with tight deadlines can be restricted to single processors to avoid
migration overheads. In addition, in heterogeneous platforms with multiple types of cores,
tasks can be assigned to specialized cores to reduce their power consumption and increase
their performance (Reddy et al, 2011).

Processor affinities can also be used to realize global, partitioned, and clustered schedul-
ing. For example, to realize partitioned scheduling, each task’s processor affinity is set to
include exactly one processor, and to realize global scheduling, each task’s processor affinity
is set to include all processors. However, what makes the processor affinity feature interesting
from a scheduling point of view is that arbitrary processor affinities (APAs) can be assigned
on a task-by-task basis, which permits the specification of migration strategies that are more
flexible and less regular than those considered in the literature to date.

1.1 Contributions

In this paper, we present the first formal study of the scheduling problem with APAs (APA
scheduling hereafter) in the context of the sporadic task model. In particular, this paper makes
the following contributions.

– We show that APA scheduling is strictly more general than global and clustered schedul-
ing combined with respect to the class of job-level fixed-priority policies (Section 3.1).
This is an interesting theoretical property and provides a strong motivation for the use of
APAs in multiprocessor real-time systems.

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 3

– We also investigate the generality of APA scheduling with respect to job-level dynamic
priority policies and observe an equivalence of global and APA scheduling (Section 3.2).

– We propose the first schedulability analysis for sporadic tasksets with processor affinity
restrictions (Section 4). Our reduction-based technique is generic in the sense that it
can reuse any existing global schedulability analysis. To this end, we show how an APA
scheduling problem can be reduced to “global-like” subproblems, which can then be
analyzed using existing global schedulability analyses (Section 4.1).

– We argue that the accuracy of the reduction-based technique can be improved with an
exhaustive search of the subproblem space (Section 4.2), albeit at the cost of an exponen-
tial number of invocations of the underlying global schedulability test. To overcome this
cost, we propose a simple but effective search heuristic (Section 4.3).

– Focusing on the specific case of response-time analysis for fixed-priority schedulers, we
derive a novel response-time analysis for APA scheduling based on linear programming
(Section 5). We formally show that the proposed linear-programming-based analysis is
at least as accurate as the exhaustive approach (Theorem 7), while reducing the time
complexity of each iteration of the response-time analysis from exponential time to
polynomial time.

– To evaluate if APA scheduling also offers improved schedulability in practice and to
empirically explore how different schedulability analyses proposed in this paper relate
to each other, we performed two sets of schedulability experiments, which we report on
in Section 6. Notably, a comparison of the proposed APA schedulability analyses with
a (simulation-based) APA “un-schedulability” test and a feasibility test showed that, in
certain cases, the proposed analysis methods are already close to the feasibility limit
(Section 6.3).

We believe this work is a significant first step towards the use of APAs in predictable
hard real-time systems (i.e., systems in which the timing correctness must be established a
priori). Furthermore, we seek to establish a thorough foundation for future work on the APA
scheduling problem, as we believe that scheduling with APAs merits increased attention from
the real-time community. We continue with a brief discussion of related work in the field of
multiprocessor real-time scheduling, the system model and notation used in the rest of the
paper, and then continue with our analysis of APA scheduling.

Remark: This paper is an extended version of our previous paper, “Schedulability Analysis of
the Linux Push and Pull Scheduler with Arbitrary Processor Affinities”, which was published
at the 25th Euromicro Conference on Real-Time Systems (Gujarati et al, 2013). Besides
improving certain sections of the conference version for the sake of clarity, the following
new contributions are made in this paper: (i) we establish an equivalence relation between
APA scheduling and global and clustered scheduling with job-level dynamic priority policies
(Section 3.2); (ii) we derive new response-time analysis and a faster linear-programming-
based response-time analysis for APA scheduling (Section 5); (iii) we extended the empirical
evaluation in Section 6 to report results of new schedulability experiments that evaluate
the linear-programming-based analysis; and finally (iv) we incorporated feasibility and
(simulation-based) “un-schedulability” tests for APA scheduling to provide better context for
the observed schedulability results (Section 6.3).

4 Arpan Gujarati et al.

1.2 Prior Work and Related Scheduling Problems

Recall that APA scheduling uses the concept of processor affinities to implement a flexible
migration strategy. Therefore, we start by classifying real-time scheduling algorithms ac-
cording to different migration strategies and compare them with APA scheduling. We then
classify different priority assignment policies used in real-time scheduling and discuss how
they relate to APA scheduling.

According to the degree of migrations allowed, real-time scheduling algorithms either
allow unrestricted migrations, no migrations, or follow a hybrid approach with an intermedi-
ate degree of migration. Global scheduling allows unrestricted migration of tasks across all
processors (if required) while partitioned scheduling allows no migration at all (Davis and
Burns, 2011b). Some notable hybrid scheduling algorithms that have been proposed include
the aforementioned clustered scheduling (Baker and Baruah, 2007; Calandrino et al, 2007),
semi-partitioned scheduling (e.g. see Anderson et al, 2005; Kato et al, 2009; Bado et al, 2012;
Burns et al, 2012) and restricted-migration scheduling (e.g., see Anderson et al, 2005; Dorin
et al, 2010). We explain below how the aforementioned scheduling approaches differ from
APA scheduling. In addition, we also compare APA scheduling to other scheduling problems
of a similar structure.

Global, clustered, and partitioned scheduling APA scheduling generalizes global, clustered,
and partitioned scheduling. In other words, APA scheduling constrains each task to migrate
only among a limited set of processors defined by the task’s processor affinity. Therefore,
using an appropriate processor affinity assignment, a taskset can be modeled as a global,
clustered, or partitioned taskset. (Section 3 formally proves the generality of APA scheduling.)

Semi-partitioned scheduling Under semi-partitioned scheduling, most tasks are statically
assigned to one processor (as under partitioning) and only a few tasks migrate (as under
global scheduling). APA scheduling resembles semi-partitioned scheduling in that it may also
allow two tasks to have separate degrees of migration. However, if and when a task migrates
under APA scheduling is determined dynamically “on-demand” as under global scheduling,
whereas semi-partitioned schedulers typically restrict tasks to migrate at pre-determined
points in time to pre-determined processors.

Restricted-migration scheduling APA scheduling, which restricts migrations to occur a-mong
a fixed set of processors, should also not be confused with restricted-migration scheduling.
Under restricted-migration scheduling, migrations occur only at job boundaries. It limits when
a job may migrate, whereas APA scheduling (like global, clustered, and semi-partitioned
scheduling) primarily specifies where a job may migrate to. However, both global and semi-
partitioned scheduling can be combined with restricted-migration scheduling (Anderson et al,
2005; Dorin et al, 2010), and similar approaches could also be explored in the case of APA
scheduling.

Virtual cluster-based scheduling While the general class of hierarchical scheduling algo-
rithms is beyond the scope of this paper, we note that Easwaran et al (2009)’s work on
hierarchical scheduling closely resembles APA scheduling. In particular, as under APA
scheduling, the virtual cluster-based hierarchical scheduling scheme proposed by Easwaran
et al (2009) also allows tasks to be assigned to overlapping physical clusters. However, APA
scheduling is fundamentally different because it considers processor affinities as first-class

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 5

entities. As a consequence, the APA scheduler and the schedulability analysis for APA
scheduling expects the processor affinity assignment to be explicitly specified as part of the
input workload, which allows the enforcement of arbitrary (i.e., scheduling-unrelated) task
placement restrictions.

Scheduling on unrelated heterogenous multiprocessors APA scheduling could also be under-
stood as global scheduling on a (degenerate) unrelated heterogeneous multiprocessor (e.g.,
see Funk, 2004), where each task has the same, constant execution cost on any processor
included in its processor affinity, and “infinite” execution cost on any other processor. While
such platforms have primarily been studied in the context of partitioned scheduling to date
(e.g., Funk, 2004; Baruah, 2004; Andersson et al, 2010), Baruah and Brandenburg (2013)
recently used this connection to derive feasibility tests for APA scheduling with implicit
deadlines.

Non-real-time scheduling Finally, the APA scheduling problem also resembles a classic
non-real-time scheduling problem in which a set of non-recurrent jobs is to be scheduled on
a set of restricted identical machines (Gálvez et al, 2010; Leung and Li, 2008), i.e., given
a set of n jobs and a set of m parallel machines, where each job has a processing time and
a set of machines to which it can be assigned, the goal is to find a schedule that optimizes
a given objective (e.g., a schedule with a minimal makespan). However, to the best of our
knowledge, this problem has not been studied in the context of the classic sporadic task
model of recurrent real-time execution (or w.r.t. other recurrent task models).

Orthogonal to the degree of migration allowed, scheduling algorithms also have a choice
of how to prioritize different jobs or tasks in a taskset and how these priorities may vary over
time. In particular, the different priority assignment policies used in real-time scheduling
can be classified either as task-level fixed priority (FP), job-level fixed priority (JLFP), or
job-level dynamic priority (JLDP) policies.

An FP policy assigns a unique priority to each task; e.g., the classic Rate Monotonic
(RM) (Liu and Layland, 1973) and Deadline Monotonic (DM) (Leung and Whitehead, 1982;
Audsley et al, 1991) priority assignments fall into this category. A JLFP policy assigns a
fixed priority to each job, and unlike under FP policies, two jobs of the same task may have
distinct priorities; e.g., this is the case in the Earliest Deadline First (EDF) policy (Liu and
Layland, 1973). A JLDP policy allows a job to have distinct priorities during its lifetime;
a prominent example in this category is the Least Laxity First policy (Dertouzos and Mok,
1989). APA scheduling can be combined with any of these priority assignment policies.

In this paper, we compare APA scheduling with global, clustered and partitioned schedul-
ing with both JLFP and JLDP policies. However, we restrict our focus to JLFP and FP policies
in our schedulability analysis framework, since such policies can be implemented with low
overheads and are more frequently used in practice. For instance, most proprietary real-time
operating systems use fixed-priority schedulers and Linux has recently added support for a
JLFP policy, i.e., EDF using the SCHED DEADLINE class (Lelli et al, 2011). In that regard,
we propose generic schedulability analysis techniques for APA scheduling that apply to both
FP and JLFP scheduling (see Section 4), and also propose a concrete response-time analysis
that is specific to FP scheduling (see Section 5). Next, we briefly formalize our system model
before providing a formal definition of APA scheduling.

6 Arpan Gujarati et al.

1.3 System Model

We consider the problem of scheduling a set of n real-time tasks τ = {T1, . . . ,Tn} on a set
of m identical processors π = {Π1,Π2, . . . ,Πm}. We adopt the classic sporadic task model
(Mok, 1983), where each task Ti = (ei,di, pi) is characterized by a worst-case execution time
ei, a relative deadline di, and a minimum inter-arrival time or period pi. Based on the relation
between its relative deadline and its period, a task Ti either has an implicit deadline (di = pi),
a constrained deadline (di ≤ pi), or an arbitrary deadline. The utilization ui of a task Ti is
ei/pi and the density δi of a task Ti is ei/min(di, pi).

Each task Ti also has an associated processor affinity αi, where αi ⊆ π is the set of pro-
cessors on which Ti can be scheduled. In this initial work on the analysis of APA scheduling,
we assume that αi is static, i.e., processor affinities do not change over time. We define the
joint processor affinity cpus(γ) of a taskset γ as the set of processors on which at least one
task in γ can be scheduled. Similarly, for a set of processors ρ , tasks(ρ) defines the set of
tasks that can be scheduled on at least one processor in ρ .

cpus(γ) =
⋃
∀Ti∈γ

αi (1)

tasks(ρ) = {Ti | αi∩ρ 6= /0} (2)

A task Tk can (directly) interfere with another task Ti, i.e., delay Ti’s execution, only if
αk overlaps with αi. We let Ii denote the set of all such tasks in τ whose processor affinities
overlap with αi. In general, the exact interfering taskset depends on the scheduling policy.
Therefore, we define IA

i as the interfering taskset if Ti is scheduled under scheduling algorithm
A. For example, in an FP scheduler, only higher-priority tasks can interfere with Ti. If we
let priok denote Tk’s fixed priority, where priok > prioi implies that Tk has a higher priority
than Ti (i.e., Tk can preempt Ti), then

IFP
i = {Tk | priok > prioi∧αk ∩αi 6= /0}. (3)

For simplicity, we assume integral time throughout the paper. Therefore, any time instant
t is assumed to be a non-negative integral value representing the entire interval [t, t +1). We
assume that tasks do not share resources (besides processors) and do not suspend themselves,
i.e., a job is delayed only if other tasks interfere with it. Further, a task Ti is backlogged
if a job of Ti is available for execution, but Ti is not scheduled on any processor. We also
use two concepts frequently: schedulability of a task and schedulability of a taskset. A task
Ti ∈ τ is schedulable on the processor platform π if it can be shown that no job of Ti ever
misses its deadline. A taskset τ is schedulable on the processor platform π if all tasks in τ

are schedulable on π .
In addition, when comparing scheduling algorithms (in Section 3), we use the concepts of

dominance and equivalence. For any two scheduling algorithms A and B, A is equivalent
to B if for any real-time taskset τ (as defined by the aforementioned sporadic task model), τ

is schedulable under A iff τ is schedulable under B. In contrast, A dominates B if for any
taskset τ schedulable under B, τ is also schedulable under A . Further, A strictly dominates
B if A dominates B and there exists at least one taskset τ ′ such that τ ′ is schedulable under
A but not under B. We analogously apply the concepts of strict dominance and equivalence
to classes of scheduling algorithms (such as FP and JLFP schedulers).

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 7

1.4 Paper Organization

The rest of this paper is structured as follows. In Section 2 we give a brief overview of
the Linux push and pull scheduler. We also give a formal definition of an APA scheduler,
assuming the Linux scheduler as a reference implementation of APA scheduling. In Section 3,
we compare APA scheduling with global, partitioned, and clustered scheduling from a
schedulability perspective for both JLFP and JLDP policies. In Section 4, we present generic
schedulability analysis for APA scheduling. In Section 5, we present response-time analysis
for APA scheduling with fixed priorities that uses a novel linear programming technique to
improve the runtime complexity of the analysis algorithm. We discuss the evaluation results
of schedulability experiments in Section 6. Lastly, Section 7 gives concluding remarks.

2 Push and Pull Scheduling in Linux

The Linux kernel uses an efficient scheduling framework based on processor-local queues.
This framework resembles the design of a partitioned scheduler, i.e., every processor has a
runqueue containing backlogged tasks and every task in the system belongs to one, and just
one, runqueue. Implementing partitioned scheduling is trivial in this design by enforcing a
no-migration policy (i.e., by assigning singleton processor affinities). However, the Linux
scheduler is also capable of emulating global and APA scheduling using appropriate processor
affinities and migrations. In the remainder of this section, we review the Linux scheduler
implementation of global and APA scheduling to illustrate the similarities between these two
approaches. Based on these similarities, we later derive schedulability analysis techniques
for APA scheduling in Section 4.

2.1 Global Scheduling with Push and Pull Operations

Under global scheduling, all backlogged tasks are conceptually stored in a single priority-
ordered queue that is served by all processors, and the highest-priority tasks from this queue
are scheduled. A single runqueue guarantees that the system is work-conserving and that it
always schedules the m highest-priority tasks (if that many are available). In preparation of
our analysis of APA scheduling, we summarize global scheduling as follows.

Global Scheduling Invariant: Let S(t) be the set of all tasks that are scheduled on any of
the m processors at time t. Let prioi(t) denote the priority of a task Ti at time t. If Tb is a
backlogged task at time t, then under global scheduling:

∀Ts ∈ S(t), priob(t)≤ prios(t)∧|S(t)|= m. (4)

However, the Linux scheduler implements runqueues in a partitioned fashion. Therefore,
to satisfy the global scheduling invariant, Linux requires explicitly triggered migrations so
that a task is scheduled as soon as at least one of the processors is not executing a higher-
priority task. These migrations are achieved by so-called “push” and “pull” operations, which
are source-initiated and target-initiated migrations, respectively, as described next.

Let Πs denote the source and let Πt denote the target processor, and let Tm be the task
to be migrated. A push operation is performed by Πs on Tm if Tm becomes available for
execution on Πs’s runqueue (e.g., when a new job of Tm arrives, when a job of Tm resumes
from suspension, or when a job of Tm is preempted by a higher priority job). The push

8 Arpan Gujarati et al.

operation iterates over runqueues of all processors and tries to identify the best runqueue
(belonging to the target processor Πt) such that the task currently assigned to Πt has a lower
priority than Tm.

In contrast to a push operation, a pull operation is a target-initiated migration carried
out by processor Πt when it is about to schedule a job of priority lower than the previously
scheduled task (e.g., when the previous job of a higher-priority task suspended or completed).
The pull operation scans each processor Πs for a task Tm assigned to Πs’s runqueue such that
Tm is backlogged and Tm’s priority exceeds that of all local tasks in Πt ’s runqueue. When
multiple candidate tasks such as Tm are available for migration, the pull operation selects the
task with the highest priority.

Preemptions are enacted as follows in Linux. Suppose a processor Πs is currently serving
a low-priority task Tl when a higher-priority task Th becomes available for execution on Πs
(i.e., processor Πs handles the interrupt that causes Th to release a job). Then Πs immediately
schedules Th instead of Tl and invokes a push operation on Tl to determine if Tl can be
scheduled elsewhere. If no suitable migration target Πt exists for Tl at the time of preemption,
Tl will remain queued on Πs until it is discovered later by a pull operation (or until Th’s job
completes and Πs becomes available again).

It is important to note that a push operation is triggered only for tasks that are not
currently scheduled, and a pull operation similarly never migrates a task that is already
scheduled. Thus, once a task is scheduled on a processor Πt , it can only be “dislodged” by
the arrival of a higher-priority task on Πt , either due to a push operation targeting Πt or due
to an interrupt handled by Πt . On which processor a job is released depends on the specific
interrupt source (e.g., timers, I/O devices, etc.), and how the interrupt routing is configured
in the multiprocessor platform (e.g., interrupts could be routed to a specific processor or
distributed among all processors). Linux makes no assumption on which processor handles
interrupts—that is, a job may be released on potentially any processor (ignoring affinity
restrictions). The scheduler is then responsible for assigning an arriving task to the appropriate
processor.

2.2 APA Scheduling

APA scheduling is similar to global scheduling in that a task may have to be migrated to
be scheduled. Under global scheduling, a task is allowed to migrate to any processor in
the system, whereas under APA scheduling, a task is allowed to migrate only to processors
included in its processor affinity set. Therefore, APA scheduling provides a slightly different
guarantee than the global scheduling invariant.

APA Scheduling Invariant: Let Tb be a backlogged task at time t with processor affinity αb.
Let S′(t) be the set of tasks that are scheduled on any processors in αb at time t. If prioi(t)
denotes the priority of a task Ti at time t, then under APA scheduling:

∀Ts ∈ S′(t), priob(t)≤ prios(t)∧|S′(t)|= |αb|. (5)

A key feature of Linux’s scheduler is that push and pull operations seamlessly generalize
to APA scheduling. A push operation on Πs migrates Tm from Πs to Πt only if Πt ∈ αm.
Similarly, a pull operation on Πt pulls Tm from Πs only if Πt ∈αm. In short, the two operations
never violate a task’s processor affinity when it is migrated.

The push and pull operations together ensure that a task Tm is waiting to be scheduled
only if all processors in αm are busy executing higher-priority tasks. However, as discussed

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 9

above, note that push and pull operations never migrate already scheduled, higher-priority
tasks to “make room” for Tm. As a result, Tm may remain backlogged if all processors in αm
are occupied by higher-priority tasks, even if some task Th ∈ S′(t) could be scheduled on
another processor Πx not part of αm (i.e., in the worst case, if Πx ∈ αh and Πx /∈ αm, then Πx
may idle while Tm is backlogged). For instance, such a scenario may occur if Th is released
on the processor that Tm is scheduled on since Linux switches immediately to higher-priority
tasks and only then attempts to push the preempted task. While this approach is not ideal
from a schedulability point of view, it has the advantage of simplifying the implementation.

From the definitions of the global and APA scheduling invariants, we can easily see that
global scheduling is a special case of APA scheduling, where all tasks have an affinity αi = π .
Conversely, APA scheduling is more general than global scheduling, but also “global-like”
from the point of view of a backlogged task—a task is only backlogged if “all available”
processors are serving higher-priority tasks. We discuss this idea in detail in the next sections.
We begin by showing that APA JLFP scheduling strictly dominates global, clustered, and
partitioned JLFP scheduling in Section 3 below, and then in Sections 4 and 5 present
schedulability tests applicable to all schedulers that guarantee the APA scheduling invariant
given in Equation 5.

3 Generality of APA Scheduling

Recall from Section 1 that a careful assignment of processor affinities can improve throughput,
can simplify load balancing (e.g., to satisfy thermal constraints), and can be used to isolate
applications from each other (e.g., for security reasons). In this section, we weigh the
schedulability benefits of APA scheduling against global and partitioned scheduling and show
that APAs are also useful from a timeliness point of view.

3.1 APA Scheduling with JLFP Policies

As discussed in Sections 1 and 2.2, APA scheduling is a constrained-migration model that
limits the scheduling and migration of a task to an arbitrary set of processors. By assigning
an appropriate processor affinity, a task can either be allowed to migrate among all processors
(like global scheduling), allowed to migrate among a subset of processors (like clustered
scheduling), or not allowed to migrate at all (like partitioned scheduling). APA scheduling
can thus emulate global, clustered, and partitioned scheduling by assigning every task in the
taskset an appropriate processor affinity, which we summarize with the following lemma.

Lemma 1 A taskset that is schedulable under global, partitioned, or clustered scheduling is
also schedulable under APA scheduling.

However, unlike under clustered scheduling, the processor affinities of tasks under APA
scheduling need not be disjoint, i.e., two tasks Ti and Tk can have non-equal processor affinities
αi and αk such that αi ∩αk 6= /0. As a result, as we show next, there exist tasksets that are
schedulable under APA scheduling, but infeasible under global, clustered, and partitioned
scheduling.

Consider the taskset described in Table 1, which is to be scheduled on two processors.
Consider any JLFP rule to prioritize tasks and an asynchronous arrival sequence, where task
T2 arrives at time 1, but all other tasks arrive at time 0. In the following, we try to schedule this
taskset using global, partitioned, and APA JLFP scheduling. We do not explicitly consider

10 Arpan Gujarati et al.

Task ei di pi
T1 1 1 10,000
T2 2 2 10,000
T3 3 4 10,000
T4 2 4 10,000
T5 501 1,000 1,000
T6 5,001 10,000 10,000
T7 5,000 10,000 10,000

Table 1 Workload parameters used in Theorem 1.

Task αi
T1 {Π1}
T2 {Π2}
T3 {Π1}
T4 {Π2}
T5 {Π1}
T6 {Π2}
T7 {Π1,Π2}

Table 2 Processor affinity assignment.

clustered scheduling because, for two processors, clustered scheduling reduces to either
global or partitioned scheduling. We begin with global scheduling.

Lemma 2 The taskset given in Table 1 is infeasible on a two-processor system under global
JLFP scheduling with any JLFP rule.

Proof Refer to Figure 1 for an illustration of the following discussion. Since tasks T1 and
T2 have unit densities each and there are two processors in the system, to obtain a schedule
without any deadline misses, jobs of these tasks must always have the two highest priorities
(although their relative priority ordering may differ under different JLFP policies). Also,
since the deadlines of tasks T3 and T4 are very small compared to the execution costs of
tasks T5, T6, and T7, jobs of tasks T3 and T4 must be assigned higher priorities relative to the
jobs of tasks T5, T6, and T7. Due to these constraints, either jobs of T3 must be assigned the
third-highest priority and jobs of T4 the fourth-highest priority, or vice versa. In either case,
either T3 or T4 (whichever has the job with the lower priority) misses its deadline because
neither can exploit the parallelism during [3,4), as illustrated in Figure 1. ut

Next, we establish that the taskset cannot be partitioned.

Lemma 3 The taskset given in Table 1 cannot be partitioned onto a two-processor system.

Proof A feasible partition must have a total utilization of at most one. The utilizations of
tasks T5, T6, and T7 are 0.501, 0.5001, and 0.5 respectively. Clearly, these three tasks cannot
be partitioned into two bins, each with total utilization at most one. ut

Finally, we observe that the taskset is schedulable if suitable per-task processor affinities
can be assigned.

Lemma 4 The taskset given in Table 1 is feasible on a two-processor system under APA
JLFP scheduling.

Proof The failure of global scheduling suggests that tasks T3 and T4 (and also tasks T1 and
T2 because of their unit densities) should be restricted to separate processors. This separation
cannot be achieved by partitioning as tasks T5, T6, and T7 prevent successful partitioning of
the taskset. Therefore, using processor affinities as given in Table 2, we partition tasks T1,
T2, T3, T4, T5, and T6, but allow task T7 to migrate. The taskset is now schedulable assuming
FP as the JLFP rule (lower indices imply higher priorities). To show this, we next prove
the schedulability of task T7. (Tasks T1, T2, T3, T4, T5, and T6 can be trivially shown to be
schedulable using uniprocessor response-time analysis.) Consider an interval Γ = [ta, td)

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 11

0 4

T2

T1

2 31

T3

T4

5

(a) T4’s deadline miss.

0 4

T2

T1

2 31

T3

T4

5

(b) T3’s deadline miss.

Fig. 1 Global JLFP schedules of tasks T1, T2, T3, and T4 in Table 1. The small up-arrows and down-arrows
indicate job-arrivals and deadlines respectively. Jobs executing on processor Π1 are in shaded in grey and
jobs executing on processor Π2 are shaded in white. (a) T3’s job is assigned a higher priority than T4’s job
and consequently T4’s job misses its deadline. (b) T4’s job is assigned a higher priority than T3’s job and
consequently T3’s job misses its deadline.

of length 10,000 where ta is the arrival time and td is the absolute deadline of a job J7
belonging to task T7. We look at the two processors Π2 and Π1 in sequence. First, we bound
the minimum time for which J7 can execute on Π2. Then, to ensure T7’s schedulability, we
argue that J7 can always satisfy its remaining processor demand on Π1.

We use techniques introduced by Baruah (2007) to bound the maximum interference
such that any demand due to a carry-in job (i.e., a job released prior to ta) is also accounted
for. During Γ , the maximum interference incurred by J7 on Π2 due to tasks T2, T4, and T6
is bounded by 2+2+5001 = 5005. (The exact interference I varies with the inter-arrival
times of jobs.) If I ≤ 5000, then J7 can be scheduled successfully on Π2 itself. However,
if I > 5000, J7 must satisfy its remaining demand on Π1; i.e., if I = 5000+ δ where
δ ∈ [1,5], then J7 must execute on processor Π1 for at least δ time units.

Let Γ ′ denote the cumulative interval(s) in Γ when jobs of T6 interfere with J7 on Π2.
Since the contribution of tasks T2 and T4 to I is at most 2+2 = 4, the contribution of T6 to
I is at least 4996+δ (recall that I = 5000+δ). This contribution is a result of either one
job or two consecutive jobs of T6 (in case the release of the first job of T6 does not align with
ta but precedes ta). In either case, Γ ′ consists of at least one contiguous interval Γ ′′ ∈ Γ ′ of
length 2498+δ/2. However, in any contiguous interval of length 2498+δ/2, Π1 can be busy
executing jobs of tasks T1, T3, and T5 for at most d(2498+δ/2)/1000e∗501+2+2 = 1507
time units, i.e., while Π2 is continuously unavailable during Γ ′′, Π1 is available for at least
2498+δ −1507 = 991+δ � δ time units, and consequently J7 has enough opportunities
to finish its remaining execution on Π1. Therefore, T7 is schedulable and the taskset is
schedulable under APA JLFP scheduling. ut

Taken together, Lemmas 1–4 show that a careful choice of processor affinities can render a
taskset feasible when global, partitioned, and clustered JLFP scheduling fails. We summarize
this observation with the following theorem.

Theorem 1 APA JLFP scheduling strictly dominates global, partitioned, and clustered JLFP
scheduling.

Proof By Lemma 1, APA JLFP scheduling is at least as powerful as global, partitioned, and
clustered JLFP scheduling combined. By Lemmas 2–4, there exists a taskset that can be

12 Arpan Gujarati et al.

scheduled under APA JFLP scheduling, but not under global, clustered, or partitioned JFLP
scheduling. The claimed strict dominance follows. ut

Theorem 1 provides further motivation to explore the benefits of APA scheduling in a
real-time context. Next, we discuss the more general case of JLDP policies.

3.2 APA Scheduling with JLDP Policies

Two important results regarding global JLDP scheduling are as follows: (i) there exist
global JLDP policies that are optimal for implicit-deadline tasks (Baruah et al, 1996); and
(ii) optimal online scheduling of constrained-deadline tasks (and therefore, also of tasks with
arbitrary deadlines) is generally impossible (Fisher et al, 2010). Thus, while the existence
of optimal APA JLDP policies for implicit-deadline tasks trivially follows from Lemma 1,
we are more interested in understanding how APA scheduling with JLDP policies fares for
constrained-deadline tasks. In this respect, we state the following theorem.

Theorem 2 Global JLDP scheduling is equivalent to APA JLDP scheduling for tasks with
constrained deadlines.

Proof From Lemma 1, any taskset that is schedulable under global scheduling is also schedu-
lable under APA scheduling. Thus, APA JLDP scheduling is at least as general as global
JLDP scheduling.

Next, we show that given any APA JLDP scheduler A and a real-time workload that is
schedulable using A , a global JLDP scheduler G can always be constructed that successfully
schedules the same real-time workload as well. In particular, G simulates A throughout the
execution of the workload and uses the results of this simulation to make global scheduling
decisions. In the following, let τ be the real-time workload under consideration, which is to
be scheduled on a multiprocessor platform π .

Since G precisely knows the set of tasks scheduled as per A at any time t, it uses this
information to assign priorities to the ready tasks. Assume there are only two distinct priority
levels, HI and LO, such that a task with priority HI is considered to have a higher-priority
than a task with priority LO. Then, G assigns priority HI to all tasks that are ready to execute
and that are also scheduled on some processor as per A at time t. The remaining ready tasks
are assigned the priority LO. The global JLDP scheduler G then schedules the |π| highest
priority ready tasks (with ties in priority broken arbitrarily).

The above priority assignment rule and the policy to (at any time t) schedule the |π|
highest-priority ready tasks guarantees that every job scheduled under A at time t is also
scheduled under G at time t (unless it has already finished its execution). Therefore, if a
workload is schedulable under A , then it is also schedulable under G . Thus, global JLDP
scheduling is as general as APA JLDP scheduling. ut

While it may admittedly be impractical for a global JLDP scheduler to simulate an APA
JLDP scheduler at runtime (due to performance reasons), this technique suffices to establish
the equivalence of the two classes of scheduling algorithms. In comparison with partitioned
scheduling, APA scheduling is of course more general irrespective of the employed priority
assignment policy (because of the existence of tasksets that cannot be partitioned).

In the following, since FP and JLFP policies are used more frequently than JLDP policies
in practice, and since global JLDP scheduling and APA JLDP are (at least theoretically)
equivalent, we emphasize Theorem 1 and therefore restrict our focus to FP and JLFP policies
when deriving schedulability analyses for APA scheduling in Sections 4 and 5.

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 13

4 Schedulability Analysis

There are many variants of APA schedulers deployed in current real-time operating systems
such as VxWorks, LynxOS, QNX, and real-time variants of Linux. However, to the best
of our knowledge, no schedulability analysis test applicable to tasksets with APAs has
been proposed to date. In this section, we apply the ideas from Section 2 that relate APA
scheduling to the well-studied global scheduling problem, and propose simple and efficient
techniques to analyze tasksets for APA scheduling. In a nutshell, we reduce APA scheduling
to “global-like” subproblems, which allows reuse of the large body of literature on global
schedulability analysis. The section is divided into three parts. We start with a simple method
for analyzing tasksets with APAs using tests for global scheduling and argue its correctness.
The second part introduces a more robust test with reduced pessimism, but at the cost of high
computational complexity. The last part introduces a heuristic-based test to balance the cost
versus pessimism tradeoff by considering only “promising” subproblems.

4.1 Reduction to Subproblems

Recall from Sections 2 and 3 that, for a given task Ti, global scheduling is a special case of
APA scheduling when αi = π . Similarly, for a subproblem with a reduced processor set αi,
and a reduced taskset tasks(αi), APA scheduling reduces to global scheduling. For example,
consider the scheduling problems illustrated in Figure 2. Figure 2(a) represents an APA
scheduling problem, where each task has an individual processor affinity. Figure 2(b) repre-
sents a subproblem of the former problem that is also an APA scheduling problem. However,
as in a global scheduling problem, task T5’s processor affinity spans all the processors in
this subproblem. Also, all the tasks in this subproblem can interfere with T5. Therefore, the
subproblem is global w.r.t. T5. In other words, if T5 is schedulable using global scheduling
on a platform consisting only of the processors in α5, then it is also schedulable using APA
scheduling on the processor platform π . This idea is formally stated in the lemma below for
JLFP schedulers and thus also extends to FP scheduling. Recall that tasks(ρ) denotes the set
of tasks that can be scheduled on at least one processor in ρ .

Lemma 5 If a task Ti ∈ tasks(αi) is schedulable when the reduced taskset tasks(αi) is
globally scheduled on the reduced processor platform αi using a JLFP policy A, then Ti is
also schedulable under APA scheduling of τ on the processor platform π using the same
JLFP policy A.

Proof By contradiction. Suppose a task Ti ∈ tasks(αi) is schedulable under global scheduling
on the processor platform αi using a JLFP policy A, but it is not schedulable under APA
scheduling on the processor platform π using the same JLFP policy A. For a job Ji of any
task Ti to miss its deadline, its response time ri must be greater than its deadline, i.e., ri > di,
where ri is the sum of Ti’s WCET and the time during which Ji was interfered with by other
tasks.

Task Ti incurs interference whenever all processors on which Ti can be scheduled (i.e.,
αi) are busy executing tasks other than Ti. With respect to a given interval [t1, t2), let Θi(t1, t2)
denote the sub-interval (or a union of non-contiguous sub-intervals) during which all pro-
cessors in αi are busy executing tasks other than Ti. Therefore, if |Θi(t1, t2)| represents the
cumulative length of the sub-intervals denoted by Θi(t1, t2), then for a job Ji arriving at ta to
miss its deadline, it is necessary that ei + |Θi(ta, ta +di)|> di.

14 Arpan Gujarati et al.

⇧1

⇧2

⇧3 ⇧4

⇧5

T1 T2

T3

T4

T5 T6

(a)

⇧1

⇧2

⇧4

T1

T2

T3

T4

T5

T6

(b)

⇧1

⇧4

T2

T4

T5

T6

(c)

⇧1

T5 T6

(d)

Fig. 2 Four scheduling problems (a), (b), (c), and (d) are illustrated here. The circles represent the processors
and the rectangles represent the tasks and their associated processor affinities, e.g., problem (a) consists of
the processor set π = {Π1,Π2,Π3,Π4,Π5} and the taskset τ = {T1,T2,T3,T4,T5,T6}. Problem (b), (c), and
(d) are subproblems of problem (a). Note that all the subproblems are global w.r.t. task T5, i.e., like in a
global scheduling problem, T5 can be scheduled on all processors in these subproblems and all tasks in these
subproblems can potentially interfere with T5.

Since Ti is not schedulable under APA scheduling on the processor platform π , there
exists an arrival sequence and a corresponding interval [ta, td) of length di such that a job
JAPA

i of Ti arrives at time ta and misses its deadline at time td under APA scheduling, i.e.,

∃ta : ei + |Θ APA
i (ta, td)|> di. (6)

However, since Ti ∈ τ is schedulable under global scheduling on the reduced processor
platform αi, for any possible arrival sequence and a corresponding interval [ta, td) of length
di, a job JG

i of Ti arriving at ta successfully completes its execution before td , i.e.,

∀ta : ei + |Θ G
i (ta, td)| ≤ di. (7)

The work that comprises Θ APA
i (ta, td) is computed upon αi. Θ G

i (ta, td) is computed upon all
processors in the processor platform, which is equal to αi in this case. Also, by construction,
under both APA and global scheduling, the same set of tasks keeps processors in αi busy
during Θ APA

i (ta, td) and Θ G
i (ta, td), i.e., the set of possible arrival sequences are equivalent.

Therefore, if there exists an interval [ta, td) such that Θ APA
i (ta, td) exceeds di− ei, then there

exists such an interval for Θ G
i (ta, td) as well, and Equations 6 and 7 cannot both be true

simultaneously. ut

Using the equivalence from Lemma 5, we design a simple schedulability test for APA
scheduling based on global schedulability analysis. In this paper, our focus is on global tests
in general, that is, we do not focus on any particular test. For this purpose, we assume the
availability of a generic test GlobalAnalysis(A,Ti,π,ζi) to analyze the schedulability of a
single task, where A is the scheduling policy, Ti is the task to be analyzed, π is the processor
set on which the task is to be scheduled, and ζi is the set of tasks that can interfere with Ti.
The test returns true if Ti is schedulable and false otherwise. Note that a result of true does not
imply that all tasks in τ are schedulable; we are only concerned with the schedulability of task
Ti. Using this interface we define a simple method to analyze tasksets for APA scheduling.
The key idea is to identify for each task an “equivalent” global subproblem, and to then
invoke GlobalAnalysis(A,Ti,π,ζi) on that subproblem.

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 15

Task ei di pi αi
T1 5 6 6 {Π2,Π3}
T2 3 4 4 {Π4,Π5}
T3 1 4 4 {Π2,Π5}
T4 2 8 8 {Π3,Π4}
T5 2 5 12 {Π1,Π2,Π4}
T6 1 3 12 {Π1,Π3,Π5}

Table 3 Workload parameters and processor affinities of the taskset discussed in Example 1.

Lemma 6 A taskset τ is schedulable on a processor set π under APA scheduling using a
JLFP policy A if ∧

∀Ti∈τ

GlobalAnalysis(A,Ti,αi, IA
i). (8)

Proof The analysis checks schedulability of each task Ti ∈ τ under global scheduling on
processor platform αi. From Lemma 5, if each task Ti ∈ τ is schedulable on the corresponding
reduced processor platform αi, then Ti is also schedulable on the processor platform π under
APA scheduling. Therefore, the entire taskset τ is schedulable under APA scheduling with
policy A on the processor platform π if for each task Ti the implied global-like subproblem
witnesses the schedulability of Ti. ut

The analysis technique in Lemma 6 is a straightforward way to reuse global schedulability
analysis for analyzing tasksets with APAs, i.e., tasksets to be scheduled by APA scheduling.
Apart from the computations required by a conventional global schedulability test, this new
analysis technique requires only minor additions for computing the interfering taskset (e.g.,
IFP
i for an FP rule, IEDF

i for an EDF rule) for every task Ti on the respective processor
platform αi. However, this algorithm assumes that the processors in overlapping affinity
regions must service the demand of all tasks that can be scheduled in that overlapping region.
Therefore, it is possible that a schedulability test claims that task Ti is not schedulable with
the given processor affinity αi, but claims that it is schedulable with a different processor
affinity α ′i ⊂ αi, i.e., the result of the schedulability analysis in Lemma 6 may vary for the
same task if reduced to different subproblems.

Example 1 Consider the taskset described in Table 3, which is to be scheduled on five
processors under APA scheduling. The processor affinities of the tasks are also illustrated
in Figure 2(a). Assume a fixed-priority scheduler with the following priority scheme: ∀i < k,
prioi > priok. To analyze the taskset, we define GlobalAnalysis(FP,Ti,αi, IFP

i) in Lemma 6
to denote a modified version of the response-time analysis for global fixed-priority scheduling
(Bertogna and Cirinei, 2007), as later discussed in more detail in Section 6. Task T5 fails the
GlobalAnalysis(FP,T5,α5, IFP

5) test with the given processor affinity, i.e, α5 = {Π1,Π2,Π4}
(see Figure 2(b) for the corresponding subproblem). However, if applied to a different subset of
the processor affinity, i.e., α ′5 = {Π1,Π4} as shown in Figure 2(c), T5 is deemed schedulable
by the test. Note that on the processor platform α5, all four higher priority tasks can interfere
with T5, but on the processor platform α ′5, only T2 and T4 can interfere with T5. Therefore,
there is a significant reduction in the total interference on T5, and consequently the test claims
T5 to be schedulable on α ′5, but not on α5.

In the next section, we use Example 1 to motivate an analysis technique for APA schedul-
ing that checks the schedulability of a task Ti on all possible subsets of αi. We also argue the

16 Arpan Gujarati et al.

correctness of this approach by showing that the schedulability of Ti on a processor platform
α ′i ⊂ αi implies that Ti is also schedulable on the processor platform αi.

4.2 Exhaustive Reduction

Lemma 7 If a task Ti ∈ τ is schedulable under APA scheduling with the processor affinity
α ′i ⊂ αi and taskset τ , then Ti is also schedulable under APA scheduling with the affinity αi
and taskset τ .

Proof By contradiction, analogous to Lemma 5. Recall from the proof of Lemma 5 that
Θi(t1, t2) denotes the sub-interval of interference during which all processors in αi are busy
executing tasks other than Ti. Similarly, we define Θ ′i (t1, t2) over all processors in α ′i . We
assume that Ti is not schedulable under APA scheduling with processor affinity αi and taskset
τ but Ti is schedulable under APA scheduling with the processor affinity α ′i ⊂ αi; i.e., if ta is
the arrival time of a job of Ti for an arbitrary job arrival sequence, then

∃ta : ei + |Θi(ta, ta +di)|> di, (9)

∀ta : ei + |Θ ′i (ta, ta +di)| ≤ di. (10)

For any arbitrary, fixed arrival sequence, at any time instant, if all processors in αi are busy
executing tasks other than Ti, then all processors in α ′i must also be executing tasks other
than Ti since α ′i ⊆ αi. Thus, Θ ′i (ta, ta + di) is a superset (⊇) of Θi(ta, ta + di), and hence,
|Θ ′i (ta, ta +di)| ≥ |Θi(ta, ta +di)|: Equations 9 and 10 cannot be true simultaneously. ut

In Example 1, the schedulability test could not claim task T5 to be schedulable with
a processor affinity of α5. However, the test claimed that the same task T5, assuming a
reduced processor affinity of α ′5 ⊂ α5, is schedulable. Note that this example does not
contradict Lemma 7. While the result of Lemma 7 pertains to actual schedulability under
APA scheduling, the schedulability test used in Example 1 is a sufficient, but not necessary,
test, which is subject to inherent pessimism, both due to the subproblem reduction and
because the underlying global schedulability test is only sufficient, but not necessary, as well.
Therefore, it may return negative results for tasks that are actually schedulable under APA
scheduling.

We next present a schedulability analysis for APA scheduling based on Lemma 7 and
the simple test in Lemma 6 that exploits the observation that it can be beneficial to consider
only a subset of a task’s processor affinity. In this method, global schedulability analysis
is performed for a task Ti ∈ τ on all possible subsets of its processor affinity, i.e., ∀S ⊆ αi.
The task Ti is deemed schedulable if it passes the analysis for at least one such subset S, and
the taskset τ is deemed schedulable if all tasks Ti ∈ τ pass the test. Recall from Lemma 7
that schedulability of a task Ti under APA scheduling with processor affinity S⊆ αi implies
schedulability of Ti under APA scheduling with processor affinity αi. However, it does not
require modifying the processor affinity of Ti from αi to S in the actual system; rather, the
reduction is merely an analysis assumption. In particular, while analyzing a task Ti, the
processor affinities of all other tasks must remain unchanged.

Theorem 3 A taskset τ is schedulable on a processor set π under APA scheduling using a
JLFP policy A if ∧

Ti∈τ

(∨
Si⊆αi
Si 6= /0

GlobalAnalysis(A,Ti,Si, IA
i ∩ tasks(Si))

)
. (11)

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 17

Proof If there exists a subset Si ⊆ αi such that Ti is schedulable using global scheduling on
processor platform Si using a JLFP policy A, then by Lemma 5, Ti is also schedulable under
APA scheduling with the processor affinity Si and the policy A. From Lemma 7, since Ti is
schedulable under APA scheduling with the processor affinity Si ⊆ αi, Ti is also schedulable
under APA scheduling with the processor affinity αi. Therefore, if corresponding subsets
exist for every task in τ , the taskset τ is schedulable on the processor set π under APA
scheduling using JLFP policy A. ut

The schedulability test given by the above lemma requires iterating over potentially every
subset S⊆αi. This makes the algorithm robust in the sense that it eliminates all false negatives
that occur when a task Ti can be claimed to be schedulable only on a subset of its processor
affinity S⊂ αi, but not on its processor affinity αi. However, since |αi| is bounded by m, and
since the schedulability tests have to be run for all the tasks in the taskset, in the worst case,
the algorithm requires O(n ·2m) invocations of GlobalAnalysis(A,Ti,αi, IA

i). Despite the
exponential complexity, we observed in our experiments that an exhaustive approach is still
feasible for contemporary embedded multiprocessors with up to five processors. However, for
multiprocessor systems with a higher number of processors, we need an alternative algorithm
that does not analyze all possible subsets of a task’s processor affinity. Instead, in the next
section, we propose a heuristic to identify and test only a few “promising” subsets for each
task.

4.3 Heuristic-based Reduction

We propose a heuristic that helps to choose promising subsets of a task’s processor affinity to
test the task’s schedulability. The heuristic removes one or a few processors at a time from the
task’s processor affinity such that maximum benefit is achieved in terms of the interference
lost (i.e., the processor time gained). We illustrate this intuition with an example below and
then proceed with a detailed explanation of the heuristic and the new analysis technique.

Example 2 Consider the taskset from Example 1 (Table 3). Since the schedulability of tasks
T1,T2, . . . ,T5 has already been established in Example 1, we carry out analysis for task T6 in
this example. T6 fails GlobalAnalysis(FP,T6,α6, IFP

6) with the processor affinity as given in
Figure 2(b), i.e, α6 = {Π1,Π3,Π5}. Therefore, we seek an appropriate subset α ′6 ⊂ α6 such
that T6 is claimed to be schedulable on processor platform α ′6. However, unlike the algorithm
given in Theorem 3, we select only promising subsets of α6. To this end, in each iteration, we
remove the processor that contributes the most to the total interference.

Iteration 1 α6 = {Π1,Π3,Π5}. The removal candidates in α6 are processors Π1, Π3 and
Π5. Removing processor Π1 leads to removal of task T5, removing processor Π3 leads to
removal of tasks {T1,T4} and removing processor Π5 leads to removal of tasks {T2,T3} from
IFP
6 . We choose to remove processor Π3 because tasks {T1,T4} contribute most to the total

interference on task T6. But T6 still fails the schedulability test.

Iteration 2 α ′6 = {Π1,Π5}. The removal candidates in α ′6 are processors Π1 and Π5. Remov-
ing processor Π1 leads to removal of task T5 and removing processor Π5 leads to removal of
tasks {T2,T3} from IFP′

6 . We choose to remove processor Π5 because tasks {T2,T3} contribute
more to the total interference on task T6 than task T5. The new subset is thus α ′′6 = {Π1} and
task T6 passes the schedulability test. Therefore, T6 is schedulable under APA scheduling with
an FP policy.

18 Arpan Gujarati et al.

Algorithm 1 HeuristicBasedAnalysis(A,Ti,αi, IA
i)

1: α0
i ← αi

2: I0
i ← IA

i
3: k← 0
4: repeat
5: if GlobalAnalysis(A,Ti,α

k
i , I

k
i) is true then

6: return true
7: end if
8: RC← φ

9: for all Tx ∈ Ik
i do

10: RC← RC∪{αk
i ∩αx}

11: end for
12: for all c ∈ RC do
13: t(c)← tasks(αk

i)\ tasks(αk
i \ c)}

14: ∆(c)← ∑Tx∈t(c)(
⌈

di
px

⌉
+1)ex

15: end for
16: c′← c ∈ RC with largest ∆(c)

|c| (tie break using |c|)
17: α

k+1
i ← αk

i \ c′

18: Ik+1
i ← Ik

i \ t(c′)
19: until (αk+1

i = αk
i)∨ (α

k+1
i = φ)

The intuition of iteratively removing processors from the processor affinity until the
processor set is empty is formally defined in Algorithm 1 with the heuristic-based procedure
HeuristicBasedAnalysis(Ti,αi, Ii). With this procedure, we obtain a new schedulability anal-
ysis for APA scheduling: a taskset τ is schedulable under APA scheduling using JLFP if,
∀Ti ∈ τ , HeuristicBasedAnalysis(Ti,αi, Ii) returns true.

Algorithm 1 shows the pseudo-code for heuristically determining subsets of αi and
then invoking global analysis on those subsets. αk

i is the new subset to be analyzed in the
beginning of the kth iteration and Ik

i is the corresponding interfering taskset. RC denotes
the set of removal candidates. A removal candidate is a set of processors c such that, if c is
removed from αk

i to obtain the new subset α
k+1
i , then there is a non-zero decrease in the total

interference on Ti from tasks in Ik+1
i (compared to the total interference on Ti from the tasks

in Ik
i). In other words, removing c from αk

i should lead to removal of at least one task from
Ik
i . Let t(c) be the set of tasks removed from Ik

i if c is removed from αk
i . To select the “best”

removal candidate, we use a metric that we call estimated demand reduction per processor,
as defined below (∆(c) is computed in line 14 of Algorithm 1).

∆(c)
|c|

=
1
|c|
·

(
∑

Tx∈t(c)

(⌈
di

px

⌉
+1
)
· ex

)
(12)

For a removal candidate c, the estimated demand reduction per processor quantifies the
approximate reduction in total interference after the kth iteration, if c was removed from αk

i
to obtain the new subset. The algorithm selects the removal candidate with the maximum
estimated demand reduction per processor. In case of a tie between two or more candidates,
we select the candidate with a smaller cardinality (i.e., among two candidates c′,c′′ ∈ RC
with equal demand reduction per processor, we select c′ if |c′| < |c′′|). This ensures that

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 19

more processors are available for scheduling Ti with the same amount of approximate total
interference. We run this procedure iteratively either until we find a successful subset or until
there is no change in α

k+1
i w.r.t. αk

i .
The procedure HeuristicBasedAnalysis(Ti,αi, Ii) requires at most a number of iterations

linear in the number of processors m because in every iteration at least one processor is
removed from Ti’s processor affinity. Therefore, after at most |αi| iterations, the processor
set becomes empty and the procedure terminates. The schedulability of a taskset τ requires
each task Ti ∈ τ to be schedulable. Therefore, in the worst case, this algorithm requires
O(n ·m) invocations of GlobalAnalysis(A,Ti,αi, Ii). Compared to the exhaustive technique
discussed in the previous section, this algorithm is much quicker to converge to a suitable
subset. However, because it is a heuristic-based algorithm and does not exhaustively evaluate
all possible subsets, it may still miss out on prospective subsets that may yield positive results.
We explore this tradeoff empirically in Section 6.

4.4 Further Restricting Affinities

Although the schedulability analysis that we discussed does not modify processor affinities,
there are certain advantages in doing so. Given an initial affinity assignment, the operating
system is conceptually free to further restrict the affinity of a task (although we are not aware
of any system that does so), for example to avoid migrations (as in partitioned scheduling),
or to better exploit the cache hierarchy (as in clustered scheduling).

Note that the proposed schedulability analysis can still be applied to reduced affinities.
However, finding a good set of reduced affinities can be difficult as the initial affinity
assignment may restrict the bin-packing solution space, limiting the efficacy of conventional
task partitioning heuristics. We leave this problem of affinity-aware partitioning as future
work.

Based on the principles developed in this section, we next present response-time analysis
for APA scheduling with fixed-priorities and constrained deadlines. While the following
techniques could analogously also be applied to obtain response-time analysis for APA
scheduling with JLFP policies or arbitrary deadlines, we focus on FP policies with constrained
deadlines for the sake of brevity.

5 Response-Time Analysis

Response-time analyses (RTA) for real-time workloads typically use fixed-point iteration
methods to compute upper bounds on the response-times of all tasks (Joseph and Pandya,
1986; Audsley et al, 1993; Lundberg, 1998; Andersson and Jonsson, 2000; Harbour and
Palencia, 2003; Palencia and Harbour, 2005; Bertogna and Cirinei, 2007; Guan et al, 2009).
In this section, we first illustrate how to perform RTA for APA scheduling using the idea of
reducing an APA scheduling problem to multiple “global-like” subproblems (as proposed
in Section 4.2). Then, to improve the runtime complexity of the schedulability analysis, we
present a novel approach based on linear programming (LP), in which a task’s response-time
is bounded by solving an LP in each iteration to determine the worst-possible interference
(Section 5.3).

Both approaches discussed in this section extend the RTA for constrained-deadline tasks
proposed by Bertogna and Cirinei (2007), which we review in Section 5.1. However, the

20 Arpan Gujarati et al.

proposed approach can also be applied to other multiprocessor RTAs due to the common
structure of all response-time analyses.

5.1 Response-time Analysis by Bertogna and Cirinei (2007)

The maximum response time rk of a task Tk is defined as the maximum time taken by any
of task Tk’s jobs to finish its execution. The analysis of Bertogna and Cirinei (2007) derives
upper bounds on this response time, denote by rub

k , and is based on the concepts of workload
and interference. The workload Wk(t) of a task Tk is the maximum duration for which task Tk
can execute in any interval of length t.

The workload is based on the number of jobs nk(t) that contribute with an entire WCET
in any interval of length t, which is given by

nk(t) =
⌊ t +dk− ek

pk

⌋
. (13)

Given nk(t), the workload of a task Tk is defined as follows:

Wk(t) = nk(t) · ek +min(ek, t +dk− ek−nk(t) · pk). (14)

The interference H i
k(t) of a higher-priority task Ti on the analyzed lower-priority task

Tk (in any interval of length t) is the cumulative length of all sub-intervals in which Tk is
backlogged but cannot be scheduled on any processor while Ti is executing. The interference
depends on the workload of the interfering task.

H i
k(t) = min(Wi(t), t− ek +1) (15)

The complete RTA for global scheduling as derived by Bertogna et al. using the above
definitions of workload and interference is stated in the following theorem. For this theorem
and for the remainder of this paper, we let hpk denote the set of tasks with priorities higher
than or equal to Tk’s priority, irrespective of whether the processor affinities of tasks in hpk
overlap (or not) with αk.

Theorem 4 (Theorem 7 in (Bertogna and Cirinei, 2007)) An upper bound on the response
time of task Tk in a multiprocessor system scheduled under global scheduling with fixed
priorities can be derived by the fixed-point iteration on the value rub

k of the following
expression, starting with rub

k = ek:

rub
k ← ek +

⌊
1
m
· ∑
∀Ti∈hpk

H i
k(r

ub
k)

⌋
. (16)

Next, we discuss in detail two approaches to adopt this RTA for schedulability analysis
of workloads under APA scheduling.

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 21

5.2 Response-Time Analysis for APA Scheduling by Reduction to Subproblems

The RTA for APA scheduling with fixed-priorities is a straightforward extension of the
generic reduction-based schedulability analysis discussed in Section 4.2 and is stated in the
following theorem.

Theorem 5 An upper bound on the response time of task Tk in a multiprocessor system
scheduled under APA scheduling with fixed priorities can be derived by the fixed point
iteration on the value rub

k of the following expression, starting with rub
k = ek:

rub
k ← ek + min

s⊆αk ∧ s 6= /0

⌊
1
|s|
· ∑

Ti∈hpk ∧ αi∩s6= /0
H i

k(r
ub
k)

⌋
. (17)

Proof Analogous to Theorem 3. Under work-conserving preemptive scheduling, a task’s
response-time does not increase if either processors are added or interference from higher-
priority tasks is reduced. Hence, Tk’s response-time bound in any “global-like” subproblem
bounds Tk’s response time in the actual APA schedule. ut

A single iteration based on Equation 17 has an exponential time complexity O(2|αk |)
because it requires checking every subset of αk. In the following, we show that by modeling
Equation 17 as a linear program (LP), polynomial time complexity can be achieved (w.r.t.
one iteration of Equation 17). The improved runtime complexity is validated in the evaluation
Section 6, where we can observe a noticeable difference between the scalability of the
LP-based analysis and the analysis stated in Theorem 5.1

5.3 Response-time Analysis using Linear Programming

In this section, we propose an LP-based response-time analysis for APA scheduling with fixed
priorities, which dominates the response-time analysis presented in the earlier Section 5.2.
In particular, just like in Theorem 4, the upper bound rub

k on the response-time of task Tk is
calculated through a fixed-point iteration, but with intermediate values obtained by solving an
LP. As we show later, the advantage of modeling the problem as an LP is that when deriving
a response-time bound, all subsets of task Tk’s processor affinity need not be explicitly
considered.

Recently, LP-based approaches have been adopted to address various problems related
to real-time scheduling, including schedulability and feasibility analyses (e.g., Lisper and
Mellgren (2001); Baruah and Bini (2008); Zeng and Di Natale (2010)). However, to the best
of our knowledge, LPs have not been previously used to derive bounds on interference under
global or APA scheduling.

In the following section, before giving details about the LP-based analysis, we derive
some properties that form the basis for our approach.

1 The introduction of the LP, however, does not change the time complexity of the complete response-time
analysis, which in corner cases still remains computationally intractable (see Eisenbrand and Rothvoß, 2008,
2010).

22 Arpan Gujarati et al.

5.3.1 Bounding the Response-time under APA Scheduling

Before stating the LP formulation, let us present how to derive an upper-bound on the
response time of a task assuming arbitrary processor affinities. Consider the execution of a
task Tk in any valid schedule. In order to satisfy the temporal constraints, deadlines must be
met in the presence of the maximum possible interference by higher-priority tasks.

To analyze the worst-case response time of task Tk, let us consider the interference
incurred by some job of Tk due to higher-priority tasks in a time window of size t, starting
upon the arrival of a job of task Tk. In the following, we show that the response time of a task
is constrained by certain invariants that hold in every possible schedule of τ . Those invariants
will be used later as constraints in the LP (see Section 5.3.2). As a first step, let us analyze
the bounds on the execution of higher-priority tasks, the source of interference.

Execution of higher-priority tasks Assuming a time window of size t, let Xi, j be the cumu-
lative execution time of a higher-priority task Ti on some processor Π j in such an interval
while Tk is not executing. Recall from Section 5.1 that H i

k(t) denotes an upper bound on the
interference incurred by task Tk due to the higher-priority task Ti. Given that Ti’s execution
does not exceed its total interference on Tk, and that affinity restrictions must be respected,
the execution of higher-priority tasks is bounded according to the following lemma.

Lemma 8 In any schedule of τ:

∀Ti ∈ hpk : ∑
Πp∈αi

Xi,p ≤ H i
k(t). (18)

Proof Consider any higher-priority task Ti. By definition, Xi,p denotes the total execution
time of Ti on processor Πp while Tk is not executing. Thus, the accumulated execution of Ti
on all the processors in αk cannot be larger than the upper bound Hk

i (t) on the interference
incurred by Tk. ut

The fact that tasks can be confined to execute only on certain processors also leads to
restrictions on the execution time.

Lemma 9 In any schedule of τ:

∀Ti ∈ hpk,∀Πp /∈ αi : Xi,p = 0. (19)

Proof Follows trivially from the fact that Ti cannot be scheduled on processors that are not
part of its processor affinity set αi. ut

Finally, given the bounds on execution time, it is possible to determine on a per-processor
granularity how much interference can be incurred by a task Tk in the worst case.

Per-processor interference Using the per-processor execution constraints for high-priority
tasks, let us infer for how long Tk is able to execute in an interval of size t. For that, consider
the total execution time of higher-priority tasks on each processor Πp ∈ αk, which we denote
by ∑Ti∈hpk

Xi,p. In any possible schedule, the processor that minimizes this term bounds the
response time of Tk. This follows from the fact that, for every processor Πp, the interference
incurred by Tk on Πp cannot be larger than the total execution time of higher-priority tasks
on Πp. This implies the following invariant.

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 23

Lemma 10 Let x be the largest value such that

∀Πp ∈ αk : x≤ ek + ∑
Ti∈hpk

Xi,p.

Then, in any schedule of τ , x is an upper-bound on the response time of task Tk.

Proof Suppose not. Then there exists a job of Tk in some legal schedule whose response time
rk satisfies:

∃Πp ∈ αk : rk > ek + ∑
Ti∈hpk

Xi,p.

This implies that a job completes ek +∑Ti∈hpk
Xi,p +∆ time units after its arrival, with

∆ > 0. Since Tk can only be delayed by the interference of higher-priority tasks, it can only
be the case that Πp stays idle for ∆ time units while task Tk is backlogged. This is impossible
under a work-conserving scheduler. ut

As we show next, the three preceding lemmas can be combined in a simple way to
construct an LP that yields an upper bound on the response time.

5.3.2 LP Formulation

The formulation of the LP follows straightforwardly from Lemmas 8–10. All LP variables
are denoted by uppercase letters to avoid ambiguity.

Consider the execution of any job of some task Tk. In order to satisfy the temporal
constraints, deadlines must be met in the presence of the maximum possible interference
by higher-priority tasks. Therefore, we propose an LP that maximizes the response-time
bound Rk, constrained by the limits on interference. Though our model assumes integer
time, integer programming is not required as we show in Section 5.3.3. Thus, all LP variables
are real-valued.

The variable Rk represents the response-time bound for any job of a task Tk in any time
window of size t starting with the job arrival. In the LP, apart from Rk, there are m · |hpk|
variables Xi,p, which express the interference of each higher-priority task on each processor
that is part of Tk’s processor affinity. Let RLP

k (t) denote the solution Rk of the LP for a given
parameter t. The LP is defined as follows:

RLP
k (t), maximize Rk subject to

∀Ti ∈ hpk : ∑
Πp∈αi

Xi,p ≤ H i
k(t) (Constraint 1)

∀Ti ∈ hpk,∀Πp /∈ αi : Xi,p = 0 (Constraint 2)

∀Πp ∈ αk : Rk ≤ ek + ∑
Ti∈hpk

Xi,p (Constraint 3)

The validity of the constraints in the definition of RLP
k (t) is a consequence of Lemmas 8–

10. Constraints 1 and 2 follow directly from Lemmas 8 and 9, since they represent the bounds
on the execution of higher-priority tasks on each processor. Because of the maximization
of the objective function, instantiating x = Rk in Lemma 10 guarantees that Rk is a valid
response-time bound for Tk.

This LP only allows computing the response-time of task Tk in a restricted time window.
For deriving a schedulability analysis, we need to apply a fixed-point iteration on the size of
the interval, as discussed next.

24 Arpan Gujarati et al.

5.3.3 LP-based RTA

In order to obtain an upper bound on the response time for any interval, we must apply a
fixed-point iteration based on Equation 16. In each iteration, a new response-time bound
rub

k is calculated by solving the LP, as the workload of higher-priority tasks grows with the
analyzed interval, until convergence. Thus, the response time can be computed with the
following fixed-point iteration (starting with rub

k = ek):

rub
k ← RLP

k (rub
k). (20)

Since the system model assumes integer time (e.g., processor cycles), it is sufficient to
round down each computed value of RLP

k (rub
k) instead of representing execution with integer

variables. Because the objective function is maximized, the solution of the LP-relaxation of
the problem provides a valid upper bound. Let RRND

k denote the rounded integer solution:

RRND
k (rub

k), bRLP
k (rub

k)c. (21)

Then the fixed-point iteration can be defined as follows:

rub
k ← RRND

k (rub
k). (22)

In the theorem below, we formally state the correctness of the LP-based approach.

Theorem 6 The response time of task Tk is upper-bounded by the value of rub
k obtained via

the LP-based fixed-point iteration in Equation 22.

Proof Let rk be the maximum response time of task Tk in any legal schedule. Consider the
interference of higher-priority tasks in a time window of size rk, starting with the arrival of
a job that incurs the maximum response time. Assuming convergence, let rub

k ≤ Dk be the
fixed-point of the iteration defined in Equation 22. We must prove that rk ≤ rub

k .
As discussed, rub

k = bRLP
k (rub

k)c is the integer solution of the LP-relaxation. By the
definition of the floor function, the real-valued solution Rk = RLP

k (rub
k) satisfies Rk < rub

k +1.
Therefore, it suffices to show that rk ≤ Rk.

The values of Xi,p and Rk in the solution of the LP satisfy all the Constraints 1-3. The
execution of higher-priority tasks is bounded by Constraints 1 and 2, which were proven,
in Lemmas 8 and 9, to be true for every schedule. Further, since the objective function
is maximized, Rk is the largest value that preserves Constraint 3. Therefore, according to
Lemma 10, Rk is an upper bound on the maximum response time rk, i.e., rk ≤ Rk. ut

Having shown that the analysis provides a correct upper bound on the maximum response
time, we now prove that the LP-based analysis does not perform worse than the RTA analysis
presented in Section 5.2. First, let us define Rsub

k (t) as the RHS of Equation 17:

Rsub
k (t), ek + min

∀s⊆αk
s6= /0

⌊
1
|s|
· ∑
∀Ti∈hpk :αi∩s6= /0

H i
k(t)

⌋
. (23)

In order to compare the fixed-points obtained via Equations 17 and 22, we first show that
the function RRND

k is dominated by Rsub
k .

Lemma 11 For any task Tk and any time window of size t, RRND
k (t)≤ Rsub

k (t).

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 25

Proof Let Rk = RLP
k (t) be the solution of the LP assuming a time window of size t, where

t ≥ 0. Let s⊆ αk be any non-empty subset of αk. It follows that:

Rk =
Rk · |s|
|s|

(24)

{Rewrite Rk · |s| as a sum.}

=

∑
Πp∈s

Rk

|s|
(25)

{For each processor Πp ∈ s, substitute Rk according to Constraint 3.}

≤
∑

Πp∈s

(
ek + ∑

Ti∈hpk

Xi,p

)
|s|

(26)

{Extract ek, divide by |s|.}

= ek +
1
|s|
· ∑

Πp∈s

(
∑

Ti∈hpk

Xi,p

)
(27)

{Transpose the indices of the nested summation.}

= ek +
1
|s|
· ∑

Ti∈hpk

(
∑

Πp∈s
Xi,p

)
(28)

{Split the outer sum into two mutually exclusive cases, αi∩ s 6= /0 and αi∩ s = /0.}

= ek +
1
|s|
·

 ∑
Ti∈hpk
αi∩s 6= /0

∑
Πp∈s

Xi,p + ∑
Ti∈hpk
αi∩s= /0

∑
Πp∈s

Xi,p

 (29)

{From Constraint 2, for every Ti ∈ hpk such that αi∩ s = /0, ∀Πp ∈ s : Xi,p = 0. }

= ek +
1
|s|
· ∑

Ti∈hpk
αi∩s6= /0

∑
Πp∈s

Xi,p (30)

26 Arpan Gujarati et al.

{The total execution of Ti on the processors in s, given by ∑Πp∈s Xi,p, cannot be greater than
the upper bound H i

k(t) on the total interference caused by task Ti.}

≤ ek +
1
|s|
· ∑

Ti∈hpk
αi∩s6= /0

H i
k(t). (31)

Since s denotes any non-empty subset of αk, the inequality also holds for the particular
subset that minimizes the RHS of the inequality.

Rk ≤ ek + min
∀s⊆αk

s6= /0

{
1
|s|
· ∑

Ti∈hpk
αi∩s 6= /0

H i
k(t)

}
(32)

By rounding-down both sides of the inequality (since a≤ b implies bac ≤ bbc for any
two reals a,b), we obtain

RRND
k (t) =

⌊
Rk

⌋
≤ min
∀s⊆αk

s 6= /0

⌊
1
|s|
· ∑

Ti∈hpk
αi∩s 6= /0

H i
k(t)

⌋
= Rsub

k (t). (33)

ut

Note that for any non-empty subset s⊆ αk, Equation 27 could be easily encoded in the
LP. However, this is not needed, since this property is already implied by the LP constraints,
and therefore implicitly assumed in the solution space via linear dependence.

Next, we compare the fixed-points of the two proposed RTAs. In the following, we let
f i(0) denote the repeated iterative application of f to the starting value 0; formally, we
define a fixed-point iteration for some function f starting at 0 recursively as f 0(0) = f (0)
and f i+1(0) = f (f i(0)), for i≥ 0. In particular, the two functions representing the LP- and
reduction-based response-time bounds have the starting points at RLP

k (0) = Rsub
k (0) = ek.

Next, we show that dominance relation among RLP
k and Rsub

k established in Lemma 11
also implies dominance among the respective fixed-points, as shown next.

Lemma 12 Let f (t) and g(t) be two monotonically increasing functions on the natural
numbers. Assume that f (t) and g(t) have least fixed-points µ f = f n(0) and µg = gm(0),
with n and m finite. If ∀t : f (t)≤ g(t), then µ f ≤ µg.

Proof By contrapositive, assume µg < µ f . Consider the fixed-point iterations of f and g,
starting at 0, each taking a minimum of n and m steps for convergence, respectively.

< 0, f 1(0), f 2(0), . . . , f n(0) = µ f , . . . >

< 0,g1(0),g2(0), . . . ,gm(0) = µg, . . . >

Since f is monotonically increasing, it can be proven by induction that ∀i < n : f i(0)≤
f i+1(0). Further, because µ f is the least fixed point of f , ∀i < n : f i(0)< f i+1(0).

From the assumption that µg = gm(0) < µ f , it follows that there exists an i, where
0≤ i≤ n, such that:

0 < .. . < f n−i−1(0)≤ gm(0)< f n−i(0)< .. . < f n(0).

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 27

This implies that:

f n−i−1(0)≤ gm(0).

Since f is monotonic, we can apply f to both sides of the inequality:

f (f n−i−1(0))≤ f (gm(0)).

By definition of f n:

f n−i(0)≤ f (gm(0)).

Since gm(0)< f n−i(0):

gm(0)< f n−i(0)≤ f (gm(0)).

Since by assumption gm(0) is a fixed point of g:

g(gm(0)) = gm(0)< f n−i(0)≤ f (gm(0)).

By choosing t = gm(0), this shows that ∃t : f (t)> g(t), proving the contrapositive. ut

Using Lemmas 11 and 12, we can now prove that the LP-based analysis never performs
worse than the analysis based on the reduction to subproblems.

Theorem 7 The response-time bound rub
k of a task Tk, obtained via the LP-based fixed-

point iteration (Equation 22), is less than or equal to the response-time bound computed via
reduction to subproblems (Equation 17).

Proof From Lemma 11, it follows that ∀t : RLP
k (t)≤ Rsub

k (t). Thus, according to Lemma 12,
after applying the fixed-point iteration, the response-time obtained with Rsub

k (t) cannot be
less than the response-time obtained with RLP

k (t). This shows that the LP-based analysis
dominates the response-time analysis based on reduction to subproblems. ut

An important outcome of the LP-based approach is the reduced computational com-
plexity when analyzing subsets of processor affinities. This leads to a more efficient way to
perform the response-time analysis than the approach based on the reduction to“global-like”
subproblems. For each step of the iteration, the solution can be computed solving an LP,
instead of evaluating the interference for each subset of αk. This effectively reduces the com-
plexity of each iteration to polynomial time. In practice, it also allows employing optimized,
off-the-shelf LP-solvers to achieve good performance.

This concludes our discussion of response-time analysis for APA scheduling with fixed
priorities. Next, we report on an empirical evaluation of the various schedulability analysis
approaches introduced in this paper.

28 Arpan Gujarati et al.

6 Experiments and Evaluation

In this section, we present the results of two sets of experiments we performed to evaluate
different aspects of APA scheduling. In particular, we sought to assess whether it provides
schedulability gains over global and partitioned scheduling, whether the proposed analyses
induce significant pessimism, and whether the proposed analyses are scalable w.r.t. the size
of the problem, i.e., the number of processors m and the number of tasks n.

In the first set of experiments, we focused on the proposed reduction-based analyses,
i.e., the exhaustive approach and the heuristic-based approach proposed in Sections 4.2
and 4.3. We first compared APA scheduling with global and partitioned scheduling in
terms of schedulability using randomly-generated tasksets. Second, we compared the two
reduction-based approaches with each other to assess if the heuristic is sufficiently accurate
in identifying promising subproblems to avoid excessive pessimism.

In the second set of experiments, we shifted our focus to the LP-based schedulability
analysis. Since the LP-based approach has lower computational complexity and performs as
well as the exhaustive-reduction-based approach (i.e., all tasksets claimed to be schedulable
by exhaustive-reduction-based analysis are also claimed to be schedulable by the LP-based
analysis), this allows us to evaluate a larger range of processor counts. We further compared
the LP-based analysis with upper bounds on schedulability derived using a feasibility test
and an un-schedulability test (explained in Section 6.3) in order to achieve a better notion of
how the proposed APA schedulability analyses perform.

We next describe the experimental setup and then report on the observed trends.

6.1 Experimental Setup

In our experiments, tasksets were generated using two different methods. The first set of
experiments, which evaluated the proposed reduction-based approaches, used the taskset
generator designed by Emberson et al (2010), whereas the second experiment, which targets
the LP-based approach, included tasksets generated similarly to previous LITMUSRT studies
(Brandenburg, 2011). The exact taskset generation parameters for an experiment are described
along with the respective experiment.

We assume implicit deadlines in our experiment because (i) the only available feasibility
test for APA scheduling (Baruah and Brandenburg, 2013) applies only to implicit-deadline
tasks; (ii) when assessing the scalability of the reduction-based methods, the choice of
constrained or implicit deadlines is irrelevant; and (iii) tasksets with constrained deadlines
are more difficult to schedule and hence would require more involved affinity assignment
heuristics, which are not the focus of this work.

Because of its widespread use, as a first step in evaluating APA scheduling, we restricted
our focus to fixed priority policies. For global FP scheduling, we used the response-time
analysis for global fixed-priority scheduling given by Bertogna and Cirinei (2007), which we
denote as G-FP-RTA. For partitioned FP scheduling (P-FP), we used uniprocessor response-
time time analysis (Audsley et al, 1993) and assigned tasks to processors in order of decreasing
utilization. In all cases, task priorities were assigned according to the DkC heuristic, which
reduces to assigning deadline-monotonic priorities in the partitioned case (Davis and Burns,
2011a).

To partition tasksets, we used five standard bin-packing heuristics: worst-fit-decreasing,
first-fit-decreasing, best-fit decreasing, next-fit-decreasing, and almost-worst-fit-decreasing.

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 29

A taskset was claimed schedulable under P-FP if it could be successfully partitioned using
any of the heuristics and if each task in each partition passed the response-time test.

To reduce pessimism in our experiments, in the response-time analysis for APA schedul-
ing we included an optimization for uniprocessors affinity masks, which is explained next.

6.1.1 Optimization for the Uniprocessor Case

Recall from Section 4.2 that when analyzing the interference on task Tk due to higher-priority
tasks using the reduction-based approach, we search for the subset s⊆ αk that results in the
least interference. An opportunity for reducing analysis pessimism arises when considering
singleton subsets, which arise either when |s| = 1 or when |αk| = 1 (i.e., either Tk does
not migrate because of the affinity restrictions, or because we assume that as an analysis
argument). In both cases we can consider that the analyzed task Tk and all the higher-priority
tasks in hpk execute entirely on the single processor in s and do not migrate. This allows
applying the exact response-time analysis for uniprocessor systems, which does not incur the
extra pessimism inherent in current global schedulability tests.

Thus, whenever |s|= 1, we can replace the workload H i
k(t) of a higher-priority task Ti

with the less pessimistic interference H i,UNI
k (t) for uniprocessor systems, defined as follows.

H i,UNI
k (t) =

⌈
t
pi

⌉
· ei (34)

The RTA test based on Equation 17 can be adapted to use the uniprocessor test as follows,
by analyzing the different subsets separately:

rub
k ← ek +min

{
min
s⊆αk
|s|>1

⌊
1
|s|
· ∑

Ti∈hpk
αi∩s 6= /0

H i
k(r

ub
k)

⌋
, min

s⊆αk
|s|=1

⌊
1
|s|
· ∑

Ti∈hpk
αi∩s6= /0

H i,UNI
k (rub

k)

⌋}
. (35)

The LP can similarly be extended with the following set of per-processor constraints:

∀Πp ∈ αk : Rk ≤ ek + ∑
Ti∈hpk
Πp∈αi

H i,UNI
k (t). (Constraint 4)

Each constraint limits the response-time on processor Πp ∈ αk assuming that every
interfering task Ti such that Πp ∈ αi executes only on Πp for the entire interval. That is,
when analyzing task Tk, Πp is assumed to be the only processor in the system. The extra
|αk| constraints bound Rk by a constant value and thus do not affect Constraints 1–3. In
our experiments, we used the refined interference bounds to achieve less pessimistic results,
which had a significant impact especially when comparing APA and partitioned scheduling.

Having discussed the experimental setup, we next discuss each experiment and the
corresponding results.

6.2 Reduction-based Schedulability Analysis

The experimental results in this section demonstrate that the proposed generic analysis—
reduction to “global-like” subproblems—is indeed effective. While Experiment 1 compared
global, partitioned, and APA FP scheduling, Experiment 2 assessed the performance of

30 Arpan Gujarati et al.

the proposed heuristic-based schedulability analysis w.r.t. the exhaustive approach. Further
comparisons of APA scheduling with other scheduling techniques and deriving other affinity
mask assignment heuristics for evaluation would certainly be interesting; however, such
studies are beyond the scope of this paper and remain the subject of future work.

To implement GlobalAnalysis(FP,Ti,αi, IFP
i) for APA scheduling, we used a modified

version of G-FP-RTA, which we refer to as G-FP-APA. Note that the tasksets used in the first
experiment were assigned processor affinities using a heuristic similar to the one discussed in
Section 4, i.e., we started with a global assignment and allowed shrinking of the processor
affinities until a schedulable partitioned assignment was found, or until a schedulable arbitrary
assignment (i.e., an intermediate assignment in between global and partitioned assignments)
was achieved. Since optimal priority assignment for APA scheduling is still an open problem,
we used the DkC priority assignment with the aforementioned heuristic (Davis and Burns,
2011a). As mentioned in Section 6.1.1, tasks with a singleton processor affinity set were
analyzed using uniprocessor response time analysis (instead of G-FP-RTA) for improved
accuracy.

We considered two variants of G-FP-APA, the exhaustive approach based on Theorem 3
(G-FP-APAe) and the heuristic-based approach based on Algorithm 1 (G-FP-APAh). For
Experiment 1, we varied the number of processors m from 3 to 8. Herein, we focus on graphs
corresponding to m ∈ {4, . . . ,8}. For Experiment 2, m ranged from 3 to 5. We also varied
the utilization from 0 to m in steps of 0.25 (excluding both end points). For each value of m
and utilization u, we generated and tested 640 tasksets, with a number of tasks ranging in
{m+1,1.5m,2m,2.5m}, to allow for tasksets that are not easily partitionable. The periods of
tasks were randomly chosen from [10ms, 100ms] following a log-uniform distribution. We
summarize the main trends apparent in the results of Experiments 1 and 2 below.

Experiment 1 (G-FP-APAh vs. G-FP-RTA vs. P-FP) Each graph in Figure 3 consists of three
curves, one for each of the three configurations, which represent the fraction of tasksets
schedulable as a function of the total system utilization. For utilizations greater than 75%, G-
FP-APAh performs consistently better than P-FP, though the average improvement is modest,
in the range of 0%-10%. From a schedulability point of view, we expect APA scheduling to
provide the most benefit for tasksets that cannot be partitioned easily, nor are schedulable
by global scheduling. However, in the experiment, G-FP-APAh does not exhibit a large
improvement over its partitioned and global counterparts for the tested workloads, because
the generated tasksets were not very challenging for the global and partitioned schedulers.

There are two causes for this effect. First, (randomly) generating such tasksets without
biasing towards a specific configuration is a challenging problem in itself, and second, the
pessimism in global schedulability analysis (which is also inherited by APA scheduling)
limits the number of tasksets with high utilization that are schedulable. Another reason for
such a small improvement in schedulability is that determining (provably) good combinations
of priority and affinity mask assignments remains an open problem, which bottlenecks the
schedulability of many workloads (that otherwise might have been schedulable).

Overall, the results shown in Figure 3 demonstrate that APA scheduling has the potential
to improve schedulability, but also indicate that substantial further work is required to fully
exploit the potential.

Experiment 2 (G-FP-APAh vs. G-FP-APAe) The objective of this experiment was to under-
stand if the performance of the heuristic-based APA schedulability analysis G-FP-APAh is
comparable to the exhaustive test G-FP-APAe. We used a similar experimental setup as in
the first experiment, but applied both the G-FP-APAh and G-FP-APAe tests. The number

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 31

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.5 2 2.5 3 3.5 4

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

P-FP
G-FP-RTA

G-FP-APAh

(a) m = 4, n = 10 (2.5 ·m)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

P-FP
G-FP-RTA

G-FP-APAh

(b) m = 5, n = 12 (2.5 ·m)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

P-FP
G-FP-RTA

G-FP-APAh

(c) m = 6, n = 15 (2.5 ·m)

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

P-FP
G-FP-RTA

G-FP-APAh

(d) m = 8, n = 20 (2.5 ·m)

Fig. 3 The comparison of APA scheduling (G-FP-APAh) versus global (G-FP-RTA) and partitioned (P-FP)
scheduling.

of processors was reduced because in our test environment the exhaustive test did not scale
beyond m = 5. The results in Figure 4 show that G-FP-APAh performs almost as well as
G-FP-APAe, i.e., the curves diverge only slightly. This validates the efficiency of the proposed
heuristic. Note that processor affinities were generated randomly in this experiment, which
explains the overall lower schedulability compared to Experiment 1.

Overall the, results of Experiments 1 and 2 demonstrate that the proposed analysis—
reduction to global subproblems—is indeed effective, though its potential is currently limited
by the absence of exact JLFP-scheduling analysis and systematic ways of choosing priorities
and affinities due to the combinatorial explosion (i.e., n tasks executing on m processors can
have up to 2m·n different affinity assignments). Further comparisons of APA scheduling with
other scheduling techniques and the development of improved affinity assignment algorithms
are left as future work.

6.3 LP-based Schedulability Analysis

Recall from Section 5.3 that LP-based RTA for FP scheduling is provably as good as the
reduction-based analysis with exhaustive reductions, while having a much lower per-iteration
complexity. And in practice, our implementation indeed performs much faster in comparison
(i.e., the overheads of invoking an LP solver are outweighed by the efficiency improvements).

32 Arpan Gujarati et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

Exhaustive
Heuristic

(a) m = 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

Exhaustive
Heuristic

(b) m = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

Exhaustive
Heuristic

(c) m = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

Exhaustive
Heuristic

(d) m = 6

Fig. 4 The comparison of heuristic based G-FP-RTA algorithm w.r.t. the exhaustive G-FP-RTA.

To empirically evaluate how well the LP-based analysis scales, Experiment 3 performs
schedulability experiments for a number of processors ranging up to 32. In the following, we
denote the LP-based schedulability analysis as G-FP-APA-LP.

Furthermore, we assessed how the proposed schedulability analysis for APA scheduling
performs in general, by plotting curves for two upper bounds on schedulability based on a
feasibility test and a simulation-based “un-schedulability” test, as explained next.

Feasibility test for JLDP APA scheduling Baruah and Brandenburg (2013) recently pro-
posed a feasibility test based on the connection between APA scheduling and scheduling
on unrelated heterogenous multiprocessors. The test assumes implicit deadlines and also
employs linear programming. Unlike the schedulability analyses proposed in this paper, the
feasibility test assumes JLDP scheduling, which strictly generalizes scheduling with FP and
JLFP policies. Though many of the tasksets reported as feasible are not representative of
JLFP policies, the curve serves as an upper bound for APA scheduling in general. Since
tasksets that are not schedulable under JLDP policies are also infeasible under JLFP policies,
this provides an indication of parameter choices that lead to infeasible tasksets. We refer to
this test as JLDP-APA-feas.

“Un-schedulability” test for FP APA scheduling A feasibility curve for JLDP policies
in itself may be misleading given that the rest of the analyses evaluated correspond to

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 33

FP scheduling and assume tasks are prioritized according to DkC. Therefore, we added a
simple “un-schedulability” test, obtained by simulating tasksets under APA scheduling with
synchronous, periodic arrivals for a thousand seconds. While such a simulation cannot be used
to establish that a given taskset is schedulable, observing a deadline miss does indicate that it
is certainly not schedulable. The simulation-based “un-schedulability” test hence provides
an upper bound on the schedulability that could be achieved by an exact schedulability test.
We include it here to provide a context for the accuracy of the proposed sufficient, but not
necessary, LP-based RTA. We denote the “un-schedulability” test as FP-APA-sim.

While the feasibility test results are irrespective of task priorities, the simulation and
schedulability tests are, however, based on a particular priority assignment (DkC). Therefore,
finding better strategies to assign priorities could potentially improve schedulability, bridging
the gap between the feasibility test and the remaining curves.

We next briefly detail the experimental setup and then report on the observed results.

Experiment 3 (G-FP-APA-LP vs. JLDP-APA-feas vs. FP-APA-sim vs. G-FP-APAh) Unlike in
Experiments 1 and 2, in this experiment we used two taskset generators. In addition to tasksets
with uniformly distributed utilization generated with Emberson et al.’s method (2010), we
also tested tasksets obtained similarly to previous LITMUSRT experiments (e.g., see Bastoni
et al, 2011; Brandenburg, 2011). The second method assumed a bimodal distribution, with
utilizations ranging uniformly over [0.001, 0.5) and [0.5, 0.9], with probabilities of 4/9 and
5/9, respectively. This distribution favors tasksets of larger utilization variance, which are in
general more difficult to schedule and led to contrasting results in our experiments. We refer
to the two taskset distributions as uniform and bimodal heavy, respectively.

We considered two variants of G-FP-APA, the LP-based approach (G-FP-APA-LP) and
the heuristic-based approach (G-FP-APAh). The number of processors was varied across
m ∈ {4,8,16,32}.

For the tasksets generated with the uniform distribution, we let the number of tasks n
range over {m+1,2m,3m,4m,5m,6m}. For every graph corresponding to m processors and
n tasks, we varied the utilization cap on the x-axis from 0 to m in steps of 0.5, with each point
representing 500 sample tasksets. The periods of tasks were randomly chosen from [10ms,
100ms] from a log-uniform distribution.

For the tasksets generated with the bimodal heavy distribution, the number of tasks is
implicitly determined based on the specified target utilization (i.e., tasks are added to the
taskset until adding another task would exceed the desired target utilization). For every graph
corresponding to m processors, we varied only the utilization cap on the x-axis from 0 to m
in steps of 0.5. Each point in the graph represents 500 sample tasksets, and the periods of
tasks were randomly chosen from [10ms, 100ms] from a uniform distribution.

Instead of generating random affinity assignments as in Experiment 2, we adopted a
different approach to avoid generating primarily infeasible tasksets. To this end, we used the
following heuristic.

Assume a system with m = 2k processors, for some k ≥ 0. We begin by assigning the m
highest-priority tasks to individual processors. At step 1, we assign the next m/2 tasks to each
pair of 2 processors. At step 2, the next m/4 tasks to each group of 4 processors, and so on.
In case tasks remain, they are assigned global affinities. This leads to a hierarchical affinity
assignment, where the highest-priority tasks execute on smaller affinity sets. As we see in
Figures 5 and 6, the overall schedulability is significantly higher than in Experiment 2. In
contrast, when using random affinity assignments, the overall schedulability decreased already
with utilizations as low as 25 percent of the total system capacity for 5 processor systems

34 Arpan Gujarati et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(a) m = 4: Bimodal heavy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(b) m = 8: Bimodal heavy

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(c) m = 16: Bimodal heavy

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(d) m = 32: Bimodal heavy

Fig. 5 The comparison of the LP-based Analysis (G-FP-APA-LP) with the APA Feasibility Test (JLDP-
APA-feas), the heuristic-based reduction (G-FP-APAh) and the APA simulation (FP-APA-sim), for tasksets
generated using the bimodal heavy distribution.

(recall Figure 4). This follows from the fact that, with random affinities, processors are more
likely to become overloaded, since tasks are allocated with no load-balancing strategy.

The resulting graphs are shown in Figures 5–7. First of all, the most reassuring result
from Experiment 3 is the fact that the LP-based approach scales well with the magnitude of
the parameters n and m, compared with the exhaustive approach shown in Experiment 2. With
respect to the computational cost of the analysis, G-FP-APA-LP outperformed G-FP-APAe
in our implementation, making accurate APA schedulability analysis viable for larger use
cases as well.

Regarding the schedulability results, we can see that the taskset parameters heavily
influence the results of a particular schedulability test, so properties of different taskset distri-
butions should not be generalized. In the case of bimodal heavy tasksets the schedulability
analysis and simulation results are similar (see Figure 5), because the affinity assignment may
be too restrictive for some of the heavy tasks (which occur more frequently in the bimodal
distribution), and because tasksets with large utilization variance are generally difficult to
schedule on multiprocessors.

However, when confronted with uniform tasksets, the analysis techniques perform worse
than the simulation, especially in scenarios with a small number of processors and high total
utilization (see Figure 6). This is caused by a combination of two factors: the pessimism in the

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(a) m = 4, n = 12 (3 ·m): Uniform

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(b) m = 8, n = 24 (3 ·m): Uniform

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(c) m = 16, n = 48 (3 ·m): Uniform

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(d) m = 32, n = 96 (3 ·m): Uniform

Fig. 6 The comparison of the LP-based Analysis (G-FP-APA-LP) with the APA Feasibility Test (JLDP-
APA-feas), the heuristic-based reduction (G-FP-APAh) and the APA simulation (FP-APA-sim), for tasksets
generated using uniform distribution with a fixed tasks-per-processor ratio of 3.

analysis of interference, which lowers the schedulability curves, and the fact that the simulated
arrival sequence may not represent the worst case, which causes the un-schedulability bound
to not be tight.

Also, in both Figures 5 and 6, schedulability starts to decrease at (relatively) smaller
utilizations as the number of processors increases. When compared with the feasibility curve,
this shows that for large processor counts there is not much room for improvement in the
results, except by changing the scheduling policy (e.g., using a JLDP policy may improve
schedulability) or by devising better affinity assignment heuristics.

Figure 7 shows graphs from the same experiment for the uniform distribution, but with a
fixed number of processors equal to 16. As we can see, with an increasing number of tasks,
the gap between analysis and simulation also increases. This is due to the pessimistic carry-in
bound in the multiprocessor response-time analysis, which is O(n). However, incorporating
Baruah (2007)’s technique to limit the carry-in work to O(m), i.e., to analyze scenarios in
which carry-in interference arises due to at most m other tasks, could help to narrow this gap.

Also note that though it is hard to establish a connection between the priority ordering,
affinity assignment, and task distribution, the feasibility test provides some insights as it does
not consider priorities. The trends w.r.t. the feasibility test in Figure 7 show that increasing

36 Arpan Gujarati et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(a) m = 16, n = 17 (m+1): Uniform

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(b) m = 16, n = 32 (2 ·m): Uniform

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(c) m = 16, n = 48 (3 ·m): Uniform

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(d) m = 16, n = 64 (4 ·m): Uniform

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(e) m = 16, n = 80 (5 ·m): Uniform

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

fra
ct

io
n

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

G-FP-APA-LP
JLDP-APA-feas

G-FP-APAh
FP-APA-sim

(f) m = 16, n = 96 (6 ·m): Uniform

Fig. 7 The comparison of the LP-based Analysis (G-FP-APA-LP) with the APA Feasibility Test (JLDP-APA-
feas), the heuristic-based reduction (G-FP-APAh) and the APA simulation (FP-APA-sim), for a fixed number
of processors equal to 16.

the number of tasks improves feasibility. This can be attributed to the high percentage of
small tasks that are generated for a fixed utilization cap.

Overall, the experiments showed that the LP-based analysis is an effective technique
for analyzing APA schedulers. It subsumes the other two reduction-based approaches by
providing good results with reasonable computational costs. We also recognize the limitations

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 37

of the analysis in terms of schedulability, but since this problem is correlated to the pessimism
under global JLFP scheduling and also to priority and affinity assignment, we leave these
open questions to future work.

7 Conclusion

In this paper, we investigated the schedulability analysis of real-time tasksets with APAs.
While processor affinities have been studied and used by application developers for providing
isolation and average-case enhancements, this work is the first of its kind that explores APAs
from a schedulability perspective.

We showed that APA-based JLFP scheduling strictly dominates global, clustered, and
partitioned JLFP scheduling. For the general case of JLDP scheduling, we showed that
APA JLDP scheduling is equivalent to global and clustered JLDP scheduling. The primary
contribution of this paper, however, is the schedulability analyses for APA scheduling. The
proposed exhaustive-reduction-based analysis is simple, reuses the extensive body of results
for global scheduling already available, but does not scale well beyond five processors. In this
regard, the heuristic-based analysis reduces the computation time significantly and, based
on our evaluation results, its accuracy is similar to, though not quite equal to the exhaustive-
reduction-based analysis. In contrast, the proposed LP-based analysis for FP schedulers is as
good as the exhaustive-reduction-based analysis and at the same time achieves low runtime
complexity, i.e., it easily scales for problem sizes of up to thirty-two processors.

In summary, this paper establishes that APAs are useful from a scheduling point of view
and proposes novel schedulability analysis methods for tasksets with APAs.

We hope to stir further research into the design of improved analysis techniques for
APA scheduling and stronger models with more flexible migration strategies. For example,
APAs do not place any restrictions on when migrations can take place. Therefore, another
obvious generalization of the studied problem would be to interpret each αi as function
of time (similar to priorities), which could be used to generalize many semi-partitioned
schedulers, and other hybrid schedulers, in the literature. There is also a significant room
for improvements by exploring the problem of finding jointly optimal processor affinity and
priority assignments, as already highlighted in Section 6.

References

Alfieri RA (1998) Apparatus and method for improved CPU affinity in a multiprocessor
system. US Patent 5,745,778

Anderson JH, Bud V, Devi UC (2005) An EDF-based scheduling algorithm for multiprocessor
soft real-time systems. In: Proceedings of the 17th Euromicro Conference on Real-Time
Systems, ECRTS’05, pp 199–208

Andersson B, Jonsson J (2000) Some insights on fixed-priority preemptive non-partitioned
multiprocessor scheduling. In: Proceedings of the Work-in-Progress Session of the 21st
IEEE Real-Time Systems Symposium, RTSS’00

Andersson B, Raravi G, Bletsas K (2010) Assigning real-time tasks on heterogeneous
multiprocessors with two unrelated types of processors. In: Proceedings of the 31st IEEE
Real-Time Systems Symposium, RTSS’10, pp 239–248

38 Arpan Gujarati et al.

Audsley NC, Burns A, Richardson MF, Wellings AJ (1991) Hard real-time scheduling: The
deadline-monotonic approach. In: Proceedings of the 1991 IEEE Workshop on Real-Time
Operating Systems and Software, pp 133–137

Audsley NC, Burns A, Richardson MF, Tindell K, Wellings AJ (1993) Applying new schedul-
ing theory to static priority pre-emptive scheduling. Software Engineering Journal 8(5):284–
292

Bado B, George L, Courbin P, Goossens J (2012) A semi-partitioned approach for parallel
real-time scheduling. In: Proceedings of the 20th International Conference on Real-Time
and Network Systems, RTNS’12, pp 151–160

Baker TP, Baruah SK (2007) Schedulability analysis of multiprocessor sporadic task systems.
In: Handbook of Realtime and Embedded Systems, CRC Press

Baruah SK (2004) Partitioning real-time tasks among heterogeneous multiprocessors. In:
Proceddings of the International Conference on Parallel Processing, ICPP’04, pp 467–474

Baruah SK (2007) Techniques for multiprocessor global schedulability analysis. In: Proceed-
ings of the 28th IEEE Real-Time Systems Symposium, RTSS’07, pp 119–128

Baruah SK, Bini E (2008) Partitioned scheduling of sporadic task systems: an ILP-based
approach. In: Conference on Design and Architectures for Signal and Image Processing,
Bruxelles, Belgium, DASIP’08

Baruah SK, Brandenburg BB (2013) Multiprocessor feasibility analysis of recurrent task
systems with specified processor affinities. In: Proceedings of the 34th IEEE Real-Time
Systems Symposium, RTSS’13, pp 160–169

Baruah SK, Cohen NK, Plaxton CG, Varvel DA (1996) Proportionate progress: A notion of
fairness in resource allocation. Algorithmica 15:600–625

Bastoni A, Brandenburg BB, Anderson JH (2011) Is semi-partitioned scheduling practical?
In: Proceedings of the 23rd Euromicro Conference on Real-Time Systems, ECRTS’11, pp
125–135

Bertogna M, Cirinei M (2007) Response-time analysis for globally scheduled symmetric mul-
tiprocessor platforms. In: Proceedings of the 28th IEEE Real-Time Systems Symposium,
RTSS’07, pp 149–160

Brandenburg BB (2011) Scheduling and locking in multiprocessor real-time operating sys-
tems. PhD thesis, University of North Carolina

Burns A, Davis RI, Wang P, Zhang F (2012) Partitioned EDF scheduling for multiprocessors
using a C=D task splitting scheme. Real-Time Systems 48:3–33

Calandrino JM, Anderson JH, Baumberger DP (2007) A hybrid real-time scheduling approach
for large-scale multicore platforms. In: Proceedings of the 19th Euromicro Conference on
Real-Time Systems, ECRTS’07, pp 247 –258

Davis RI, Burns A (2011a) Improved priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems. Real-Time Systems 47(1):1–40

Davis RI, Burns A (2011b) A survey of hard real-time scheduling for multiprocessor systems.
ACM Computing Surveys 43(4):35:1–35:44

Dertouzos ML, Mok AK (1989) Multiprocessor online scheduling of hard-real-time tasks.
IEEE Transactions on Software Engineering 15(12):1497 –1506

Dorin F, Yomsi PM, Goossens J, Richard P (2010) Semi-partitioned hard real-time scheduling
with restricted migrations upon identical multiprocessor platforms. CoRR abs/1006.2637

Easwaran A, Shin I, Lee I (2009) Optimal virtual cluster-based multiprocessor scheduling.
Real-Time Systems 43(1):25–59

Eisenbrand F, Rothvoß T (2008) Static-priority real-time scheduling: Response time com-
putation is NP-hard. In: Proceedings of the 29th IEEE Real-Time Systems Symposium,
RTSS’08, pp 397–406

Multiprocessor Real-Time Scheduling with Arbitrary Processor Affinities 39

Eisenbrand F, Rothvoß T (2010) EDF-schedulability of synchronous periodic task systems
is coNP-hard. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, pp 1029–1034

Emberson P, Stafford R, Davis RI (2010) Techniques for the synthesis of multiprocessor
tasksets. In: Proceedings of the 1st International Workshop on Analysis Tools and Method-
ologies for Embedded and Real-time Systems, WATERS’10, pp 6–11

Fisher N, Goossens J, Baruah SK (2010) Optimal online multiprocessor scheduling of
sporadic real-time tasks is impossible. Real-Time Systems 45(1-2):26–71

Foong A, Fung J, Newell D (2004) An in-depth analysis of the impact of processor affinity
on network performance. In: Proceedings of the 12th IEEE International Conference on
Networks, ICON’04, pp 244–250

Foong A, Fung J, Newell D, Abraham S, Irelan P, Lopez-Estrada A (2005) Architectural
characterization of processor affinity in network processing. In: Proceedings of the 2005
IEEE International Symposium on Performance Analysis of Systems and Software, pp
207–218

Funk SH (2004) EDF scheduling on heterogeneous multiprocessors. PhD thesis, The Univer-
sity of North Carolina at Chapel Hill

Gálvez JJ, Ruiz PM, Skarmeta AFG (2010) Heuristics for scheduling on restricted identical
machines. Tech. rep., University of Murcia, Spain

Guan N, Stigge M, Yi W, Yu G (2009) New response time bounds for fixed priority multi-
processor scheduling. In: Proceedings of the 30th IEEE Real-Time Systems Symposium,
RTSS’09, pp 387–397

Gujarati A, Cerqueira F, Brandenburg BB (2013) Schedulability analysis of the linux push and
pull scheduler with arbitrary processor affinities. In: Proceedings of the 25th Euromicro
Conference on Real-Time Systems, ECRTS’13, pp 69–79

Harbour M, Palencia JC (2003) Response time analysis for tasks scheduled under EDF
within fixed priorities. In: Proceedings of the 24th IEEE Real-Time Systems Symposium,
RTSS’03, pp 200–209

Jang HC, Jin HW (2009) MiAMI: Multi-core aware processor affinity for TCP/IP over
multiple network interfaces. In: Proceedings of the 17th IEEE Symposium on High
Performance Interconnects, HOTI’13, pp 73–82

Joseph M, Pandya P (1986) Finding response times in a real-time system. The Computer
Journal 29(5):390–395

Kato S, Yamasaki N, Ishikawa Y (2009) Semi-partitioned scheduling of sporadic task systems
on multiprocessors. In: Proceedings of the 21st Euromicro Conference on Real-Time
Systems, ECRTS’09, pp 249 –258

Lelli J, Lipari G, Faggioli D, Cucinotta T (2011) An efficient and scalable implementation
of global EDF in Linux. In: Proceedings of the 7th International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications, OSPERT’11, pp 6–15

Leung JYT, Li CL (2008) Scheduling with processing set restrictions: A survey. International
Journal of Production Economics 116(2):251 – 262

Leung JYT, Whitehead J (1982) On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance evaluation 2(4):237–250

Lisper B, Mellgren P (2001) Response-time calculation and priority assignment with integer
programming methods. In: Proceedings of the Work-in-Progress and Industrial Sessions of
the 13th Euromicro Conference on Real-Time Systems, ECRTS’01

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM 20(1):46–61

40 Arpan Gujarati et al.

Lundberg L (1998) Multiprocessor scheduling of age constraint processes. In: Proceedings
of the 5th International Conference on Real-Time Computing Systems and Applications,
RTCSA’98, pp 42–47

Markatos E, LeBlanc T (1992) Using processor affinity in loop scheduling on shared-memory
multiprocessors. In: Proceedings of Supercomputing’92, pp 104–113

Mok AK (1983) Fundamental design problems of distributed systems for the hard-real-time
environment. Tech. rep., Massachusetts Institute of Technology

Palencia J, Harbour MG (2005) Response time analysis of EDF distributed real-time systems.
Journal of Embedded Computing 1(2):225–237

Reddy D, Koufaty D, Brett P, Hahn S (2011) Bridging functional heterogeneity in multicore
architectures. SIGOPS Operating Systems Review 45(1):21–33

Salehi JD, Kurose JF, Towsley D (1995) Further results in affinity-based scheduling of parallel
networking. University of Massachusetts, Amherst, MA

Zeng H, Di Natale M (2010) Improving real-time feasibility analysis for use in linear
optimization methods. In: Proceedings of the 22nd Euromicro Conference on Real-Time
Systems, ECRTS’10, pp 279–290

	Introduction
	Push and Pull Scheduling in Linux
	Generality of APA Scheduling
	Schedulability Analysis
	Response-Time Analysis
	Experiments and Evaluation
	Conclusion

