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ABSTRACT
This paper presents a case study in the design and implementation
of OS-level support for low-criticality tasks with stringent latency
requirements, a particularly challenging aspect of mixed-criticality
workloads, in PikeOS, a commercial, certified mixed-criticality OS.
Special consideration is placed on key real-world design constraints
that arise in a commercial setting, pertaining to customer needs,
vendor constraints, and certification demands.
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1 INTRODUCTION
Mixed-criticality systems (MCS) naturally emerge in safety-critical
application domains when non-functional requirements related to
size, weight, and power (SWaP) force the integration of components
with different failure-assurance levels, or criticalities, onto a single
hardware platform [5]. The inherent challenge in such systems
lies in ensuring isolation between tasks at different criticality lev-
els that share hardware resources (e.g., processor cores, memory,
caches), while still ensuring that performance requirements (both
throughput and latency) are met.

While a large number of approaches for analyzingmixed-criticality
systems have been proposed in the real-time literature (see Sec. 6),
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they are predominantly based on models that assume low-criticality
tasks to also be low-importance tasks. For example, under Vestal’s
model [44], one of the first and most-studied mixed-criticality mod-
els, lower-criticality tasks are no longer serviced, or serviced only
in a best-effort manner, when the system enters a degraded mode.1

However, in commercial mixed-criticality systems, the criticality
of a task simply refers to the level of assurance that it has been cer-
tified for, and does not always correspond with its importance [13].
That is, a task may be deemed to be of low criticality during safety
certification, but still be important from a business or product stand-
point. For example, the responsiveness of a low-criticality network
driver is not necessarily less important than a higher-criticality
control task if increased network latency degrades premium com-
fort or entertainment features (further examples are provided in
Sec. 2.1). Thus, in a commercial mixed-criticality OS, in addition to
ensuring OS-level timeliness guarantees for high-criticality tasks, it
is equally important to provide such guarantees for low-criticality
tasks, as they may still be of high importance to customers, even if
they are less relevant from a safety certification point of view.

In this paper, we explore the problem of supporting mixed-
criticality applications from the perspective of the vendor of an
established and certified multicore real-time OS. From this point of
view, the problem is not how to support high-criticality workloads,
as such systems have been successfully supported for many years
and deployed in the products of numerous customers across a range
of safety-critical domains. Rather, the challenge lies in providing
first-class OS support for low-criticality applications with demand-
ing performance requirements, without compromising the isolation
of high-criticality tasks or system certifiability.

In our experience, there is little customer interest in abandoning
established system-design practices for the integration of high-
criticality components. Consequently, there exists no strong busi-
ness incentive to radically re-design the OS and its process sched-
uler. Rather, our goal is to integrate support for mixed-criticality
workloads with as minimal a disruption to existing use-cases and
workflows as possible, in particular, without affecting the system’s
ability to host exclusively high-criticality workloads.

This paper. We report on a case study in the design and imple-
mentation of such a system in PikeOS, a certified microkernel in
1As suggested by Alan Burns in his keynote at the 2015 Dagstuhl Seminar on “Mixed
Criticality on Multicore/Manycore Platforms” (Seminar 15121), we use the terms
“normal mode” and “degraded mode” to refer to what is in the literature often called
low- and high-criticality mode, respectively, to better reflect system performance from
an application point of view.
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real-world use in many safety-critical domains, including avionics,
automotive, and transportation applications. In Sec. 2, we provide
an overview of PikeOS and identify deficiencies in its support for
low-criticality tasks with stringent latency requirements (i.e., tasks
that can tolerate at most a few milliseconds of latency or less). We
then highlight key design constraints that arise in the context of
a commercial real-time kernel that are typically not considered
in primarily research-oriented designs (Sec. 3). Based on this re-
quirements analysis, we present a minimally invasive extension of
the PikeOS scheduling architecture that provides explicit OS-level
support for low-criticality, low-latency tasks and sketch its imple-
mentation in PikeOS (Sec. 4). Finally, we present an evaluation of the
proposed design — in an open, freely shareable re-implementation
of the PikeOS scheduling architecture in LITMUSRT, a Linux-based
research RTOS — that empirically substantiates the identified prob-
lem and shows the solution to be effective and practical (Sec. 5).

2 THE LOW-LATENCY CHALLENGE
We begin by motivating why low-criticality tasks with stringent
latency requirements are an important workload, then provide an
overview of PikeOS, and finally discuss why, in a mixed-criticality
context, the former are challenging to support in the latter.

2.1 Motivating Use-Cases
With embedded multicore platforms gaining adoption in real-time
systems, SWaP and cost considerations are driving the consolida-
tion of an increasing variety of workloads onto shared hardware
platforms. It is this consolidation that presents a problem when part
of the workload involves low-criticality tasks with nonetheless de-
manding requirements. We give three examples of such workloads
from the automotive domain that illustrate how such requirements
arise, and why it is important to provide OS-level support for them.

Rear-view cameras. Consider a car with an external rear camera
that provides a rear-view video feed to a screen inside the car, a
nowadays common feature, where the rear-view camera is linked
to the display via UDP packets that are transmitted over an automo-
tive Ethernet connection. As component costs must be low (due to
market pressures), the employed network adapters have only lim-
ited on-device buffer memory for packets. To achieve an acceptable
frame rate without any dropped frames or other visual glitches,
incoming packets must be processed within a few milliseconds of
their arrival (i.e., the network driver is latency-sensitive).

As a rear-view camera is a purely assistive technology that aug-
ments the normal rear-view mirror, and since the driver of the
vehicle both remains in full control and retains full responsibility
for the safe operation of the vehicle, the rear-view camera and its
supporting infrastructure are not critical to vehicle safety (i.e., they
are “nice to have,” but not essential). However, for the manufac-
turer of the vehicle, the rear-view camera is a crucial feature, as
the error-free operation of all driver assistance features is essen-
tial to a car model’s critical acclaim and thus commercial success.
The rear-view camera system and the corresponding display is
thus a low-criticality application that is of high importance to the
application developer (i.e., the RTOS customer).

Wireless audio streaming. Current-generation cars allow cell
phones and other mobile devices to stream audio to the car’s speak-
ers, and to receive audio input from integrated microphones, via
common wireless protocols such as Bluetooth or IEEE 802.11. Such
audio features naturally require the wireless network stack and
audio driver to exhibit at most a few milliseconds of latency, as any
gaps in playback or noticeable buffering would degrade the user ex-
perience. While such functionality is certainly not safety-critical, it
is of high importance from a business standpoint since users expect
smooth and error-free media streaming and hands-free calls.
Touch input. Recent luxury cars incorporate touch-based infotain-
ment systems that give passengers a central point of control over
comfort and convenience features of the car. Input events generated
by the touch screen are processed by a thread of the graphical user
interface (GUI) framework and routed to individual applications,
which then react to the input and provide some sort of visual feed-
back to users. To give applications sufficient time to respond, the
GUI infrastructure must exhibit as little latency as possible. Again,
this is an example of an application that is of low criticality from a
safety standpoint (it is used either when the car is at rest, or only by
passengers other than the driver when moving), but of high impor-
tance to the car maker since GUI lag (i.e., observable latency from
touch to visual feedback) is frustrating to users and thus highly
undesirable in a premium product.

To reiterate, due to cost and SWaP pressures, there is a growing
need for non-critical, but latency-sensitive workloads such as those
sketched above to be co-located with more critical applications.
This poses considerable challenges for the OS, as discussed next.

2.2 PikeOS and its Scheduling Architecture
PikeOS is a separation microkernel for multi-core, hard-real-time
systems, and can be used as both a real-time OS (i.e., hosting native
applications) as well as a type-1 hypervisor (i.e., hosting complete
operating systems). PikeOS provides various personalities, or differ-
ent OS interfaces (e.g., ARINC 653, Linux, POSIX, AUTOSAR, etc.),
for the development of applications in different domains.

PikeOS is widely used in industry due to its certifiable nature:
PikeOS has been certified to safety standards such as DO-178B
(avionics), IEC 61508 (electrical/electronic/programmable electronic
safety-related systems), and EN 50128 (railways), making it a “battle-
hardened,” top-tier choice for mixed-criticality applications with
components at different safety and security levels that need to be
isolated via resource partitioning.
Scheduling in PikeOS. The PikeOS scheduler is based on time
partitioning (as defined by the APEX specification in the ARINC
653 standard reference). Conceptually, time partitions are encap-
sulating containers for a set of threads, where threads in different
time partitions are scheduled in mutually exclusive time windows.
In PikeOS, application tasks are assigned to application time parti-
tions, which are activated periodically as specified by a repeating
static schedule. When a time partition is activated, any tasks of the
previously active time partition are forcibly preempted; frequent
time-partition switches thus incur significant runtime overheads.
As application time partitions are strictly separated from another,
tasks in different partitions can be certified to different levels of
assurance (i.e., each in accordance to its own criticality).



Supporting Low-Latency, Low-Criticality Tasks in a Certified Mixed-Criticality OS RTNS ’17, October 4–6, 2017, Grenoble, France

TP1 TP1TP2 TP2

TP0

Time Partitioning with Static Schedules

255

254

…

1

0

Task Task

0

1

…

1

0

E
li
g

ib
le

-p
ri

o
ri

ty
 b

it
m

a
p

P
e

r-
p

ri
o

ri
ty

 r
e

a
d

y
 q

u
e

u
e

s

NULL

NULLSystem Task

TP0

Task

Task

Task

Task

Task

Task
System Task

Generate repeating schedule

TP1 TP2

Task

Per-Time-Partition Structures Scheduling Logic

Find currently active TPx (if any)

using bitmaps  (in case of a tie, favor

Pick task from ready queue (FIFO
order). Update bitmap (if needed).

Dispatch task4:

3:

2:

1:

Determine highest eligible priority 

Time

TP0 over TPx )

Figure 1: An overview of the PikeOS scheduler. The system comprises multiple application time partitions (TPX ), for which a
static schedule is generated, and the system time partition (TP0), which is always eligible (left). Each time partition consists of
256 ready queues and an associated bitmap tracking which levels have eligible tasks (middle). At runtime, the first task from
the highest-priority, non-empty ready queue, in either TP0 or the currently active TPX , is dispatched (right).

Owing to PikeOS’ microkernel design, all OS functionality (e.g.,
device drivers, file systems, etc.) is implemented as service daemons
(or tasks) scheduled in time partitions similarly to standard applica-
tions. To ensure that essential system services are always available,
PikeOS assigns these tasks to a special time partition zero that is al-
ways eligible to run. Thus, in PikeOS, there may be up to two active
time partitions in the system at any given time: time partition zero
(TP0) and, depending on the static schedule, an application time
partition (TPX ). Note that threads in TP0 are always certified to the
highest assurance level since their functional and non-functional
correctness is essential to the correct operation of the entire system.

For every time partition in the system, PikeOS maintains a ready
queue for each of 256 supported priority levels, and each ready
queue is simply a FIFO-ordered list of tasks eligible for scheduling
at that priority level. When making a scheduling decision, the
scheduler finds the highest-priority, non-empty ready queue, and
picks the first task from it. It does this taking into account tasks
from both TP0 and the currently active TPX , if any, with TP0 tasks
taking precedence over those in the currently active TPX at any
given priority level. Consequently, while the worst-case latency
incurred by tasks in TPX depends on the static schedule, TP0 tasks
are always schedulable and thus incur lower latency (affected only
by other higher-priority tasks in the system).

For each time partition in the system, the PikeOS scheduler
maintains a priority bitmap to track non-empty priority levels so
that it can efficiently determine the highest priority that is currently
eligible when making a scheduling decision. That is, for each time
partition and priority level, a bit is set if and only if runnable threads
exist in the corresponding time partition at the given priority level.

Fig. 1 summarizes the PikeOS scheduling architecture. On a mul-
tiprocessor, it is instantiated on each core (partitioned scheduling).

2.3 Mixed-Criticality Support in PikeOS
We now discuss how the PikeOS scheduler, as described above,
provides support for tasks with varying criticalities and perfor-
mance requirements. For simplicity, we consider four broad classes
of tasks2 (Fig. 2): tasks with either high or low criticality, combined
with either high or low latency tolerance.
2In practice, more complex taxonomies with multiple criticality levels exist; however,
two levels of criticality suffice to illustrate the low-latency, low-criticality problem.

TP0 TP0 or high-criticality TPx

Low-criticality TPx

Low Latency Required High Latency Acceptable

Low
Criticality

High
Criticality

This paper

Figure 2: Mixed-criticality support in PikeOS.

High-criticality support. For high criticality tasks (i.e., those that
have been certified, or are expected to be certified, to the highest
assurance level), two cases exist. If they do not require low latency
(e.g., computation-heavy, mission-critical planning tasks), one can
perform aWCET analysis or estimation and place the task within an
appropriately dimensioned TPX . On the other hand, high-criticality
tasks with low-latency requirements (e.g., safety-critical event han-
dlers or threads in charge of retrieving sensor data at a high rate
with minimal delay) can simply be placed within TP0 at an appro-
priate priority level to eliminate the added delay of having to wait
for a TPX slot activation in the static schedule.

Importantly, since TP0 is certified at the highest criticality level
anyway, this means that in general, the choice of placing a particular
high-criticality task in TP0 versus within a TPX is a balancing act
that does not substantially alter the overall certification burden: one
must consider the tradeoff between an acceptable latency bound
and system performance, but regardless of where such a task is
placed, TP0 requires certification at the highest level as it is essential
to the correct operation of the entire system, and it potentially
interferes with the rest of the system, thus requiring additional
analysis consideration in all others TPX ’s. Concerning the choice
of placement, as the latency requirement of a high-criticality task
becomes more demanding, there is less benefit in placing it within
a TPX , since allocating a TPX with a short period results in a static
schedule with a large number of preemptions, which consequently
degrades task throughput and increases system overheads.
Low-criticality support. Similarly, for low-criticality tasks that
do not require low latency (e.g., navigation or route planning tasks
in the bottom-right quadrant in Fig. 2), one can simply dimension a
TPX with the appropriate duration and frequency so as to satisfy
the throughput and latency needs of the task.

Finally, how does one deal with the lower, left quadrant of Fig. 2:
low-latency, low-criticality tasks (L3C tasks)? While L3C tasks can
conceptually be placed within a TPX dimensioned with the appropri-
ate duration and frequency, in practice, the resulting high frequency
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of slots in the static schedule causes an unacceptable degradation
of system performance and task throughput. (We demonstrate this
experimentally in Sec. 5.) In addition, even if an L3C task is placed
in a TPX with an extremely high activation frequency, it still incurs
higher average latency compared to an equivalent task in TP0 .

Alternatively, L3C tasks may be placed within TP0 . However
in order to not interfere with any high-criticality tasks in TP0 or
any TPX (i.e., to guarantee freedom-from-interference), criticality-
monotonic priorities [3] must be used in this case, so that L3C tasks
have lower priority than any high-criticality task. Unfortunately,
this again results in excessive latency due to the interference caused
by the higher-priority tasks in the system. For demanding L3C tasks
with stringent maximum and/or average latency requirements, this
is not a viable solution. Further, giving such L3C tasks a higher
priority is not an option: it would cause a massive increase in the
certification burden, as they nowmust be shown to not cause undue
interference to lower-priority, higher-criticality tasks at the level
of assurance of the interfered-with higher-criticality tasks. While
conceptually possible, this is not an economically viable solution.

Thus, to properly support L3C tasks in TP0 , we require a mech-
anism that allows a task’s priority to be chosen independently of
its criticality (i.e., the ability to place a low-criticality task at a high
priority), albeit without substantially changing the existing time-
partitioning architecture, which is mandated by the ARINC 653
standard, entrenched in legacy systems, and desired by customers.
To this end, this paper describes an extension of the PikeOS sched-
uling architecture for supporting L3C tasks without compromising
isolation or certifiability of the system.

3 DESIGN CONSTRAINTS
Extending the scheduler in a real-world certified kernel like PikeOS
presents certain design constraints that are usually not given much
attention in purely academic settings. These constraints arise due
to the need to (i) support previously-certified legacy applications,
(ii) fit in with the existing ecosystem of established tools, software
architectures, and system-design practices, and (iii) provide appli-
cation developers with simple, intuitively understood mechanisms.

Taking these issues into account is crucial, as both certification
of legacy applications and the incorporation of tools and workflows
incur significant financial cost and up-front investment (i.e., em-
ployee time spent on documentation for certification, training of
application developers in the use of specialized tools, the wealth
of experience gained from fielding and refining robust software
architectures in prior product generations, etc.). While an in-depth
discussion of the software engineering and business aspects of MCS
support is beyond the scope of this paper, to provide an idea of the
real-world context, we outline some of the primary constraints that
guided the design of our solution for supporting L3C tasks.
A. Strictly opt-in for OS customers. Owing to the financial in-
vestment of the customer base of a certified kernel, the first and
foremost design constraint is that any support for L3C tasks must
be strictly opt-in. That is, the majority of customers that do not
(yet) need L3C support should require no changes in their designs,
implementations, configurations, and deployment workflows.
B. Minimally intrusive for the OS vendor. Certification of com-
mercial real-time kernels requires a large investment of both time

andmoney. Consequently, any extensions to the kernel, as is needed
to provide support for L3C tasks, must aim to minimize re-certifi-
cation efforts for vendors, which means that fundamentally chang-
ing the core scheduling architecture is not an option.
C. Runtime efficiency. Increases in runtime overheads must be
avoided, at least for customers that do not opt in to the L3C support
features. For customers opting in to the new features, the runtime
costs should still be as low as possible (e.g., requiring new hardware
to support the added overhead is undesirable, while requiring ad-
justments to the processor allocations of time partitions to account
for new overheads or bounded interference is considered tolerable).
D. Support for static configuration. Certified safety-critical sys-
tems are commonly statically configured. For example, PikeOS
provides an Eclipse-based IDE that allows for static configuration
of all relevant parameters for the entire system. In general, a special
developer role exists, the system integrator, whose responsibility it is
to determine the partition schedule and all other resource partitions
(memory, communication end points, etc.), and to integrate com-
ponents developed by independent teams into a complete system.
To fit into existing practices and established engineering processes,
our extensions should continue to support this separation of roles
and the ability to statically configure the system.
E. Analytically sound. Our design should be amenable to analy-
sis. In particular, one should be able to bound a priori how much
additional interference is introduced by L3C tasks on both higher-
and lower-criticality tasks in any time partition in the system.
F. Established approaches. To ease the certification burden, it is
desirable for the design to rely on established andmature techniques
that are well-understood, widely accepted, and that have been
proven to be practical and reliable in prior systems and prototypes.
G. Low barrier to entry. To ensure acceptance by the customer
base, any added feature should be easy to opt in to (i.e., without re-
quiring system-wide changes), easy to use once it has been adopted,
and transparent to latency-insensitive tasks and time partitions. In
particular, the added support for L3C tasks should provide strong
isolation guarantees without requiring the system integrator or
individual developers to fully understand all relevant scheduling
theory, and without requiring any manual adjustments to time
partitions that do not require the new features.
H. Optionally strict freedom-from-interference. Depending
on the specific certification process, it often sufficient to ensure
freedom from unbounded interference. That is, typically, some in-
terference is acceptable as long as it can be shown a priori to be
bounded, at a level of assurance commensurate with the criticality
of the interfered-with task. However, certain maximum-importance
tasks (either in TP0 or a TPX ) must be strictly isolated from L3C
tasks. That is, it is insufficient to guarantee merely bounded inter-
ference for such tasks; rather, it must still be possible to ensure zero
interference for them without forgoing all benefits of L3C support.
I. Support for customer-specific specialization. Finally, due
to the extremely varied and hard-to-anticipate nature of project-
specific customer requirements, there is a need to support customer-
defined specialization and customization in L3C support. The chal-
lenge here is that per-customer specialization must be economi-
cally viable, which means that it should not invalidate the existing
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Figure 3: The proposed solution, which satisfies the con-
straints discussed in Sec. 3 by encapsulating L3C tasks
within reservations in EDF-designated priority levels.

documentation packages for most parts of the kernel that are un-
concerned with scheduling and L3C support.

4 DESIGN AND IMPLEMENTATION
In accordance with the discussed design constraints and business
incentives, we did not seek to invent a radically new scheduling
approach. To the contrary, we iterated on a simple design that
leverages as much as possible existing state-of-the-art techniques
to satisfy mixed-criticality workloads in a production RTOS.

At a conceptual level, our approach is based on encapsulating
L3C tasks within hard resource reservations [29] that are scheduled
via an earliest-deadline-first (EDF) scheduler3 using an “EDF within
fixed priorities” approach [20], which allows L3C tasks to be safely
placed in TP0 at any priority level without fundamentally increas-
ing the overall certification burden. At the implementation level,
our solution comprises three key components: (i) a scheduler plu-
gin framework with a well-defined interface that is amenable to
certification, (ii) a reservation-based EDF plugin that hooks into
the framework, and (iii) a flexible API within the reservation plugin
that allows implementing customer-specific reservation policies.

In the following, we discuss this architecture in detail, provide an
illustrative example highlighting key properties, and assess how the
design satisfies the constraints in Sec. 3. Additionally, we provide a
high-level sketch of the prototype implementation in PikeOS.

4.1 EDF-Scheduled Reservations in FP Bands
Our overall solution, as illustrated in Fig. 3, involves introducing
reservations [29] (also known as servers), i.e., analytically sound
containers for threads, at specific priority levels, called EDF bands,
within TP0 that are scheduled via EDF. The ready queue correspond-
ing to an EDF band is ordered by non-decreasing server deadlines.
Whenever an EDF band is the highest eligible priority, a task from
the first reservation (i.e., the reservation with the earliest deadline)
is dispatched. Similar “EDF in priority bands” approaches have
been studied extensively in prior work [20]. A key advantage in our
3While a similar approach for fixed-priority systems, called adaptive mixed-criticality
(AMC) scheduling [3] has been proposed in prior work, we focus on an EDF-based
solution as it enables greater flexibility, higher schedulable utilization of the system [28],
and since it does not require dedicating a large number of priority bands to L3C tasks.

Release CompletionDeadline

Scheduled Ineligible (budget enforcement)

Deadline miss

Server budget

x

151050 time

A

B

C

x

x

(a) Example scenario under the default PikeOS scheduler without L3C support.

151050 time

A

B

C

(b) The same scenario under PikeOS with the proposed L3C support.

Figure 4: Example of the benefits of the proposed design: low
latency for L3C tasks without unbounded interference.

context is that EDF bands require minimal changes to the schedul-
ing architecture: from the perspective of the PikeOS fixed-priority
scheduler, we are simply deferring the queuing logic for certain
priority levels to a secondary EDF scheduler, instead of the default
FIFO scheme. This is in accordance with design constraint B.

Since no single reservation policy is ideal for all workloads (de-
sign constraint I), we chose to avoid hard-coding a policy. Rather,
within the reservation scheduler, we define a sub-API that allows
well-known reservation schemes such as polling, sporadic [38, 40,
41], deferrable [42], or hard constant-bandwidth servers [1], as well
as custom reservation types, to be implemented.

Note that reservations are supported only in TP0 and not in
any TPX — our design is intended specifically for L3C tasks with
latency requirements that cannot be accommodated by the cyclic
TPX schedule, the primary temporal enforcement mechanism. Since
we are not aware of a pressing use-case for reservations within a
TPX , we omitted this capability to minimize the required changes.
Example. Before elaborating how the design satisfies the consider-
ations in Sec. 3, we illustrate the approach with the example shown
in Fig. 4. Consider a simplified scenario with three tasks with (i)
a low-priority L3C task in TP0 (task A in Fig. 4) with a WCET of
1ms and a relative deadline of 5ms, (ii) a medium-priority, high-
criticality task with a WCET and period of 5ms and 8ms, respec-
tively, which resides in a TPX with 100% utilization (task B), and
(iii) a high-priority L3C task in TP0 with a WCET of 1ms and a
deadline of 10ms (task C). For the sake of the example, suppose that
task C occasionally suffers transient overloads with bursty arrivals.

First consider the task set under the stock PikeOS scheduler
as deployed today without L3C support, which is illustrated in



RTNS ’17, October 4–6, 2017, Grenoble, France Manohar Vanga, Andrea Bastoni, Henrik Theiling, and Björn B. Brandenburg

Fig. 4(a). At time zero, a job of task B is released and begins exe-
cuting. Shortly thereafter, a job of L3C task A is released. Since it
has lower priority, it is not dispatched until all higher-priority jobs
complete at time 6. Due to this accumulated interference, task A
incurs excessive latency and thus misses its deadline at time 5.5.
This highlights that low-priority tasks are subject to interference
from higher-priority tasks within both TP0 (task C) and any TPX
(task B) — criticality-monotonic scheduling is not L3C compatible.

In contrast, the other L3C task, task C, is given a higher priority
than task B, which allows it to run with minimal latency when it
arrives at time 3. However, the tradeoff is that the high-criticality
jobs of task B do not enjoy freedom from unbounded interference
w.r.t. task C. This is problematic: starting at time 8, a series of bursty
job releases of task C cause task B to incur undue interference and
to ultimately miss its deadline at time 16. With the existing PikeOS
scheduling architecture, this workload cannot be supported.

Fig. 4(b) shows how the scenario plays out with the proposed
approach. In this case, tasks A and C are encapsulated within rate-
limited sporadic servers [38, 40] with a period of 10ms and a budget
of 1ms and 2ms, respectively, and both are assigned to an EDF
band above the priority of the high-criticality task B. The blue lines
show the budget of the reservation over time. For example, it can
be seen that the deferrable server for task A depletes 1ms of its
2ms budget between times 0.5 and 1.5 as the job executes for a 1ms
duration. At time 10.5, it is replenished to its full amount.

Since L3C tasks are safely encapsulated within reservations in
TP0 , they can be given higher priorities than the high-criticality
task B without risking unbounded interference. This has the benefit
of greatly improved latency for task A: when task A is activated at
time 0.5, it is able to immediately execute, this time successfully
completing before its deadline at time 5.5.

Crucially, the interference from both tasks A and C on task B is
bounded due to the reservations’ limited budget. That is, reserva-
tions prevent sudden bursty job releases from negatively impacting
high-criticality tasks: when a job of task C arrives at time 10, it is
unable to proceed until time 14 since the reservation’s budget was
depleted already at time 4 and is replenished only at time 13.

This example highlights how encapsulating L3C tasks within
budget-constrained hard reservations allows them to meet their
latency goals (when operating normally, i.e., when not overloaded)
while simultaneously protecting lower-priority, higher-criticality
jobs from unbounded interference.

Adherence to design constraints. We briefly revisit the design
constraints from Sec. 3 in light of the proposed solutions. Design
constraint A (opt-in only) is satisfied since customers can simply
choose to not designate any priority levels as EDF bands (which is
the default). As already mentioned, design constraint B (minimally
intrusive) is satisfied because the core scheduling infrastructure
remains largely unchanged in place, with changes primarily related
to integrating a plugin interface and delegating some queueing
decisions to a reservation policy that is realized as a plugin.

Runtime efficiency (constraint C) is achieved because overheads
are incurred only when EDF bands are enabled (in addition to minor
plugin support costs, discussed below in Sec. 4.2), and the cost of
(core-local) EDF scheduling is relatively small by modern standards.

The approach also satisfies constraint D (static configurability)
since EDF bands, all reservations, and all needed resources can be
allocated and configured statically, and presented to the system
integrator in the usual environment. To application developers,
reservations can be presented as a “dynamic part” of a TPX , to
which certain threads can be assigned i.e., the fact that reservations
are actually managed in TP0 does not have to be exposed.

Constraints E (analyzability) and F (established techniques) are
satisfied since reservation-based scheduling is a well-studied and
widely-known approach. The proposed system can be analyzed
based on a combination of existing techniques [20, 28, 39, 45, 46];
a discussion of these techniques is however beyond the scope of
this paper, which is focused on the design and implementation of
the system. In future work, it would be desirable to verify such an
analysis as part of the Prosa project [7] to support the certification
process with a firm formal foundation.

Constraint G (low barrier to entry) is satisfied since the place-
ment of threads in reservations is transparent to application devel-
opers (i.e., no special support needs to be implemented by the tasks
themselves), and system integrators can be provided with automatic
analysis support (i.e., TPX parameters can be automatically adjusted
to account for bounded interference from L3C reservations) in the
integration toolchain due to the large body of supporting theory for
reservation-based scheduling. Further, for tasks situated below an
EDF band, the fact that (some) higher-priority tasks are arbitrated
in EDF order (rather than FIFO order) is immaterial [20], and tasks
situated above an EDF band are still not affected by lower-priority
tasks, so it is possible to gradually phase-in L3C support into an
existing system with relatively minor, localized changes.

Finally, strict freedom-from-interference w.r.t. L3C tasks can
be guaranteed to tasks with priorities higher than any EDF band,
which satisfies constraint H, and customer-specific L3C policies
(constraint I) can be supported thanks to the plugin-based imple-
mentation, which we discuss next.

4.2 Certification-Friendly Kernel Extensions
To realize the proposed design, we first implemented a plugin frame-
work with a well-defined, generic callback API that enables the
implementation of scheduler extensions. The reason for adopting
this approach, instead of simply incorporating our changes into
the main scheduler in PikeOS, has to do with design constraints
A, B, and C. By first implementing an efficient (design constraint
C), well-defined callback API upon which to build our reservation-
based EDF scheduler, we allow for a static “core” of the kernel that
does not change. This way, the high cost of certifying this core
once can be amortized across many customers (who can reuse the
certification package). If a customer requires a custom L3C policy,
they only have to bear the full cost of certifying the plugin that
hooks into the callback API, without having to redo the certification
effort from scratch for the (much larger) core.

The plugin framework is implemented as a set of callbacks placed
at strategic points in the PikeOS scheduler, thus allowing a plu-
gin to inject scheduling logic into the control path of the main
fixed-priority scheduler in response to scheduler-related events
(e.g., threads waking up and blocking, scheduler invocations, and
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scheduler timeouts). We implemented four broad categories of call-
backs: (i) scheduling-related callbacks (e.g., for dispatching or re-
queueing threads), (ii) timer-related callbacks (e.g., to handle budget-
enforcement timers and job releases), (iii) per-thread callbacks (e.g.,
for handling thread-related events such as waking up and blocking),
and finally (iv) callbacks for thread admission.

The callback interface was carefully designed to not require
access to core scheduler data structures from within plugins. For
example, per-thread callbacks such as those for threads waking
and blocking, which typically require modification of the scheduler
bitmap directly, instead simply instruct the plugin framework to
do so on its behalf. This separation of access is a crucial aspect
of the design that ensures that plugins do not directly manipulate
scheduler-private data structures, which greatly helps to make the
scheduler core amenable to certification without a priori knowledge
of the plugin used. It also makes it possible to provide binary-only
distributions of the system to customers (i.e., licenses that provide
access only to object files without source code) without limiting
the customer’s ability to employ custom plugins.

The implementation makes use of the PikeOS poke interface [43],
a mechanism to allow loadable kernel drivers to provide, apart from
the regular I/O functionality, special extension functionality to the
kernel binary (e.g., trace points, monitoring, and security loggers).
The advantage of using the poke mechanism is that if no scheduler
plugin is linked into the kernel, the PikeOS scheduler works with
its default implementation with negligible overhead (as the poke
mechanism has been optimized to be extremely lightweight when
disabled). On the other hand, when the plugin is enabled, callbacks
are bound only once (during initialization), and following this, the
only added overhead is that of two additional conditionals (e.g.,
under the x86 architecture, the poke interface incurs an overhead
of only three additional instructions).

An alternative approach with possibly slightly lower overheads
would be a binary re-writing scheme similar to DTrace [17] or
Feather-Trace [4], in which the kernel text is directly altered at
runtime. However, such approaches were considered too difficult
to certify as it effectively introduces self-modifying code, which is
conceptually undesirable when making a safety or security case.

5 EVALUATION
The proposed design for L3C support in PikeOS, as described in
the preceding sections, was implemented as a fully functional en-
gineering prototype on PikeOS 4.1. This prototype has undergone
an internal evaluation to ascertain the basic feasibility and the po-
tential of the approach. However, due to restrictions arising from
the proprietary nature of PikeOS, it is not possible to share this
implementation of the proposed design. In the interest of repro-
ducibility, we reimplemented the discussed scheduling architecture
in the open-source LITMUSRT research OS. All data reported in the
following stems from this open-source reimplementation.4

We conducted experiments to validate two key claims: (i) under
the default PikeOS scheduling architecture, it is resource-inefficient
to simultaneously support low (sub-millisecond) latencies for spo-
radically arriving low-criticality tasks while guaranteeing isolation
and acceptable performance for high-criticality tasks (as discussed
4All code can be found at https://people.mpi-sws.org/~bbb/papers/details/rtns17
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Figure 5: Latency of L3C task within TPX (left axis) vs
L1 data-cache (LOAD+STORE) misses/second for matrix-
multiplication task in alternating TPX (right axis).

in Sec. 2), and (ii) our proposed reservation-based EDF scheduling
architecture enables L3C tasks to be safely placed in TP0 at any pri-
ority without compromising the isolation of high-criticality tasks
(i.e., while introducing only a bounded amount of interference).

Experimental setup. We re-implemented the PikeOS schedul-
ing architecture and reservation-based L3C support in LITMUSRT
2017.1 (based on Linux 4.9.30). All experiments were run on a Rasp-
berry Pi 3b board comprising a BCM2837 SoC with a quad-core
ARM Cortex-A53 CPU running at 1.2GHz, and 1 GiB of RAM. In
our experiments, we used only a single core to provision real-time
tasks since the focus of this paper is on intra-core interference.

We devised a synthetic mixed-criticality system configuration
inspired by the use-cases described in Sec. 2.1. Our synthetic system
comprised of two time partitions, each with 50% utilization and a
period of 40ms, alternating in 20ms slots. To emulate a CPU- and
cache-intensive task, the first time partition contained a matrix-
multiplication task that multiplied random 10x10 matrices in a
tight loop. The second time partition contained a periodic (implicit-
deadline) real-time task with aWCET of roughly 10ms and a period
of 40ms. Job releases were synchronized with partition switches. In
TP0 , we emulated the presence of a high-criticality, low-utilization,
low-latency real-time task (e.g., a system event handler) by intro-
ducing a task with a WCET of roughly 2ms, a period of 100ms,
and a relative (constrained) deadline of 5ms. Finally, we emulated a
network-facing L3C task using a UDP “echo” server. A UDP client,
running on a separate machine, sent 128-byte UDP packets to the
server, which responded with a SHA1 hash of the message.

Recall from Sec. 2 that in the stock PikeOS scheduling archi-
tecture, L3C threads may be provisioned in three different ways:
(i) within an appropriately dimensioned TPX , (ii) within TP0 at a
low priority as dictated by a criticality-monotonic priority assign-
ment scheme, or (iii) within TP0 at a high priority. Additionally, the
proposed approach allows L3C tasks to be placed in reservations in
TP0 . We tried each possibility to experimentally confirm the effects,
tradeoffs, and benefits predicted in Secs. 2 and 4.

L3C Tasks in a TPX . Placing an L3C task in an appropriately-
dimensioned low-criticality TPX is convenient from a certification
standpoint: due to the time-partitioned scheduler, the L3C task is
completely isolated and its impact on other time partitions can
be determined a priori. Unfortunately, to guarantee low latency
to sporadically arriving jobs, frequent, small scheduling slots are
required in the time-partition schedule, which, due to frequent
preemptions, negatively affects the performance of other tasks.

https://people.mpi-sws.org/~bbb/papers/details/rtns17
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Figure 6: Maximum-observed UDP latency vs. the total uti-
lization of higher-priority RT tasks.

To illustrate this tradeoff, we created two TPX ’s with 50% utiliza-
tion each, one hosting the matrix multiplication loop and the other
the (L3C) UDP echo server. We varied the slot size of the partitions
while maintaining the same utilization (i.e., the scheduling table
always comprised of two slots of equal size, one for each TPX ).

We measured the round-trip latency of packets sent to the UDP
server and the L1 data-cache misses of the matrix-multiplication
task. Cache misses were counted with the Cortex-A53’s built-in
performance monitoring unit (PMU). Fig. 5 depicts the results.

First, as expected, the latency of the L3C task reduces linearly
as the slot size is decreased. This is unsurprising as the slot size
determines the worst-case scheduling delay (i.e., the interval during
which the L3C task has pending work but is not scheduled because
a different TPX is currently active). However, as can be seen in
the figure, in order to achieve latencies below 10ms,5 the small
slot sizes result in a significant increase in the number of cache
misses of the matrix multiplication task. For a slot size of 5ms, we
observed around 18,000 cache misses per second, compared with
a median of around 9,300 cache misses for all measured slot sizes
above 15ms (measured in incremental steps of 5ms, up to 100ms).
Further, attempting to support sub-millisecond latencies results in
a further 3x increase in the number of cache misses (around 66,000
misses per second with a 1ms slot size).

To summarize, lowering latency by placing L3C tasks within a
frequently activated TPX results in substantially increased system
overheads, which negatively impacts the performance of other
tasks in the system. Compensating this effect can, for example,
necessitate substantially larger resource allocations to other tasks,
or a switch to more capable hardware, which is undesirable. If a
low-criticality task requires “low” latency, which on this hardware
means less than about 10ms, then placing it in a TPX is problematic.
L3C tasks in TP0 at a lowpriority.When placing L3C tasks in TP0
under a criticality-monotonic priority-assignment scheme, freedom-
from-interference can be guaranteed for higher-criticality (and
hence higher-priority) tasks. Unfortunately, this also means that
they in turn interfere with the L3C task, thus increasing its latency.

To quantify this effect, we placed the (L3C) UDP echo server in
TP0 at a low priority and created a number of higher-priority real-
time tasks (also within TP0) and varied their total utilization from
zero (i.e., no higher-priority tasks were present) to 0.5 (i.e., higher-
priority tasks use up 50% of the execution time on the CPU). In our
setup, based on the workload reported in an automotive benchmark
provided by Bosch [22], we spawned seven higher-priority tasks
5Studies have shown that for interactive digital interfaces there is a perceivable im-
provement in user experience with latencies well below 10ms [30].

using harmonic task periods ranging from 5ms to 1000ms. Each
task was assigned 1

7 of the total utilization and the per-job execution
cost was determined based on each task’s period.

Fig. 6 shows the results of the experiment. The maximum ob-
served UDP latency can be seen to increase significantly as the
utilization of the high-priority tasks in TP0 increases; when higher-
priority tasks have a utilization of 50%, the latency increases to over
250ms, compared with around 1.2ms under no load.

While this result is not surprising per se, it does demonstrate
that the additional interference from all higher-criticality tasks in
the system can result in substantial latency in low-criticality tasks.
Note that any higher-criticality tasks, even those within a TPX ,
may potentially interfere with the L3C task in TP0 . In particular, a
criticality-monotonic priority assignment scheme may result in a
lower priority for the L3C task in TP0 compared to placing it within
a TPX , incurring further interference from tasks whose priority
would be relatively lower otherwise.

L3C tasks in TP0 at a highpriority.An alternative to the criticality-
monotonic priority-assignment scheme, we placed the UDP echo
server placed at the highest priority within TP0 . Under this setup,
we observed average latencies of only 1.35ms and a maximum la-
tency of 1.57ms at a rate of ten requests per second. However, this
approach unsurprisingly exposes lower-priority (but potentially
higher-criticality) tasks to possibly unbounded interference.

To illustrate the danger of such interference, we measured the re-
sponse times of high-criticality real-time task under three scenarios.
Recall that, in our experimental setup, one of the two time parti-
tions contains a periodic, implicit-deadline real-time task with a
budget of 10ms and a period of 40ms (henceforth “task A”). There is
further a high-criticality system event handler in TP0 with a budget
of 2ms, period of 100ms, and a relative deadline of 5ms (“task B”).
We measured both tasks’ response times in the presence of the L3C
UDP server with (i) no load, (ii) with a “normal” rate of ten requests
per second, and finally (iii) with a baseline rate of ten requests per
second and sporadic one-second bursts of 1,000 requests per second.
Response times were measured with LITMUSRT’s schedule tracing
facility over the course of 60 seconds.

Fig. 7 and Fig. 8 show the results for tasks A and B, respectively.
(Ignore for now the curve labeled “Bursty w/ res,” which corre-
sponds to the proposed reservation-based scheme and is discussed
below.) First note that the curves corresponding to the no-load and
normal-load scenarios overlap, which indicates that the normal
load imposes only negligible interference. However, in the bursty
scenario, prominent spikes are visible in both Figs. 7 and 8. In the
case of task A (Fig. 7), response times can be seen to increase 40x
from around 10ms to over 400ms. Similarly, the response times
of task B (Fig. 8) rise from below 2ms to 6ms. Both tasks A and B
miss their deadlines of 40ms and 5ms, respectively.

Crucially, this experiment shows that lower-priority (both high-
and low-criticality) tasks do not have freedom from interference
from higher-priority L3C tasks in TP0 . In particular, the OS cannot
guarantee bounded interference, which makes certification prob-
lematic. For example, in our example, the UDP server, if placed at
maximum priority, might implement a custom rate-limiting solu-
tion, the correctness of which would have to be certified at the level
of assurance of the highest-criticality real-time task in the system.
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Figure 7: Response times of task A (Y axis) as a function
of job number (X axis) under four different scenarios. All
curves overlap, with exception of the promiment spikes of
the curve labeled “Bursty requests.”
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Figure 8: Response times of task B (Y axis) as a function
of job number (X axis) under four different scenarios. All
curves overlap, with exception of the promiment spikes of
the curve labeled “Bursty requests.”

In conclusion, our results demonstrate that placing L3C tasks
in either a TPX or within TP0 (regardless of the priority at which
it is placed) leads to unsatisfactory, resource-intensive, or unsafe
results. We now show how the proposed approach allows the L3C
thread to be safely placed at maximum priority within TP0 .

L3C tasks in reservations within TP0 .We placed the L3C task in
TP0 within a maximum-priority, but rate-limited reservation with
a budget of 1ms and a period of 50ms (i.e., provisioned for roughly
20 requests per second) and reran the previous experiment (with
burst-induced transient overloads of the UDP echo server).

The curves labeled “Bursty w/ res” in Figs. 7 and 8 show the
resulting response times of tasks A and B, respectively. As can be
inferred from the fact that the curves overlap completely with those
corresponding to the no-load and normal-load scenarios, there are
no significant changes in the response times of tasks A or B during
request-rate spikes: as expected, temporal isolation is ensured. At
the same time, the observed UDP latency under normal load is just
as low as before, which shows the that proposed approach succeeds
in accommodating the needs of L3C tasks without jeopardizing
high-criticality tasks, the goal of our case study.

6 RELATEDWORK
Mixed-criticality systems. Following the now-famous MCS pa-
per by Vestal [44], there has been a tremendous amount of research
in this field, with a strong focus on the theoretical underpinnings
of specialized scheduling strategies; we refer the interested reader
to Burns and Davis’ excellent survey [5].

The bulk of the mixed-criticality literature has focused on en-
suring guarantees for high-criticality tasks in both normal and de-
graded modes, with low-criticality tasks receiving only best-effort
or no service once the system enters degraded mode. However,
some approaches based on slack distribution are aimed at improving
the performance of low-criticality tasks by allowing low-criticality
tasks to use the slack available in the schedule of high-criticality
tasks [9, 10, 18, 19, 27, 31].

In particular, Groesbrink et al. [18] approach the problem explic-
itly from a certification point-of-view and guarantee a minimum
bandwidth for VMs running on a real-time hypervisor by employ-
ing periodic reservations and an elastic task model. A mode-change
triggers resource redistribution, which reassigns spare capacity.

While these approaches are suitable for a clean-slate scheduler
implementation, they are hard to integrate into an existing kernel
like PikeOS without violating one or more of the constraints de-
scribed in Sec. 3. However, we note that other implementations of
mixed-criticality schedulers have successfully applied such tech-
niques, including one by Herman et al. [21] and the XtratuM hy-
pervisor for the avionics domain [6, 8].
Reservations and hierarchical scheduling. Processor reserva-
tion are a classic technique by which one or more levels of in-
direction are introduced in the real-time scheduler, that is via a
(multi-level) hierarchical scheduling scheme, to separate high-level
real-time policy from low-level process dispatching. In this hierar-
chy of schedulers, parent schedulers allocate CPU time to one of
their child schedulers, and this process is repeated until a leaf node
(task) is chosen. The advantage of hierarchical scheduling is that
it is amenable to compositional analysis, and there is a large body
of real-time literature dedicated to this topic [1, 2, 11, 12, 14, 23–
26, 29, 32–34, 36–38, 42]. In this paper, we simply employ existing
real-time server algorithms in the support of L3C tasks.

In PikeOS, we chose to implement deferrable servers [24, 42]
due to their simplicity, although it would be interesting to compare
different reservation schemes (e.g., sporadic servers [38, 41] and
constant-bandwidth or CBS servers [1]) from a certification point-
of-view under consideration of the constraints described in Sec. 3.
EDF within fixed-priorities. The idea of performing EDF sched-
uling within a fixed-priority scheduler is not a new one [20, 28]. In
particular, Harbour and Palencia [20] presented a response-time
analysis for “EDF within priorities”, a model very similar to ours
where several EDF priority levels may be designated and EDF sched-
uling is used for tasks within those priority levels.
Slot shifting. Finally, another approach that could be used to sup-
port L3C tasks is slot shifting [15, 16, 35], where the static partition
schedule is dynamically altered at runtime when sporadic jobs are
released by redistributing statically determined spare capacity (i.e.,
by shifting periodic workloads without violating their deadlines).
While slot shifting is a well-established technique, in the context
of PikeOS, we decided against the use of slot shifting as it requires
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runtime changes to the static schedule, which is potentially prob-
lematic from a certification point-of-view, and because it represents
a more substantial departure from the established PikeOS schedul-
ing model (especially w.r.t. constraints B, C, G, and H in Sec. 3).

7 CONCLUSION
We conducted a case study exploring OS-level support for L3C
tasks in practical mixed-criticality systems, and presented the de-
sign challenges involved in implementing such support in PikeOS,
a certified real-time OS that has seen widespread use in the real
world. Under our proposed solution, L3C tasks are encapsulated
within reservations scheduled via an EDF scheduler, thus allowing
L3C tasks with low-latency requirements to be safely placed within
TP0 at designated EDF priority levels. We presented the design and
implementation of our solution in PikeOS as well as results from
our evaluation of an alternate open-source re-implementation in
LITMUSRT on a 64-bit ARM SoC. Our results show that the cur-
rent PikeOS scheduler design cannot simultaneously realize low
latencies for L3C tasks, low partition-switching overheads, and
bounded interference for high-criticality tasks. In contrast, our ap-
proach leverages reservations to guarantee, withminimally invasive
changes, freedom from unbounded interference, as well as freedom
from any interference (for tasks prioritized above any EDF band),
while enabling low latencies with low overheads. In conclusion,
while supporting demanding L3C tasks with stringent latency con-
straints — in particular, supporting them well — is a challenge for
static time-partitioned systems, the problem can be effectively and
efficiently solved with a careful, certification-cognizant integration
of state-of-the-art reservation techniques.
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