
Scaling Global Scheduling with Message Passing
Felipe Cerqueira Manohar Vanga Björn B. Brandenburg

Max Planck Institute for Software Systems (MPI-SWS)

Abstract—Global real-time schedulers have earned the reputa-
tion of scaling poorly due to the high runtime overheads involved
in global state management. In this paper, two mature implemen-
tations, one using fine-grained locking (SCHED DEADLINE) and
one using coarse-grained locking (LITMUSRT’s G-EDF plugin),
are evaluated and it is shown that, regardless of locking granu-
larity, indeed neither scales well w.r.t. worst-case overheads due
to excessive lock contention. To demonstrate that this is not an
inherent limitation of global scheduling, the design of G-EDF-MP
is presented, a global scheduler that uses message passing to avoid
lock contention and cache-line sharing. It is shown to offer up to a
23- to 36-fold reduction in worst-case scheduling overhead on a 64-
core platform, which translates into much improved schedulability
(in some cases, more than 120 additional tasks can be supported).

I. INTRODUCTION

Global real-time schedulers dispatch tasks to processors
dynamically at runtime based on the state of all processors and
all tasks. Such a global view of the system enables a wealth of at-
tractive algorithmic properties—most famously optimality (e.g.,
[6, 24, 37])—that have spurred considerable interest in global
scheduling in recent years (e.g., [2, 5, 10, 26, 28, 31], see [23]
for a recent overview). However, in practice, the Achilles’
Heel of global scheduling is runtime overheads [7, 13, 16, 18]:
maintaining the required consistent global state can be costly,
and becomes increasingly problematic with rising core counts.
One might thus reasonably wonder: is it at all possible to scale
global scheduling beyond a handful of cores?

In this paper, we answer this question in the affirmative.
We first study two mature, radically different implementa-
tions of global real-time scheduling—LITMUSRT’s global
earliest-deadline first (G-EDF) scheduler [13, 17] and the
SCHED DEADLINE scheduler for stock Linux [27, 32, 33]
(SD hereafter)—and show that they indeed do not scale.
LITMUSRT’s implementation uses a single coarse-grained lock
to protect all scheduler state; its lack of scalability is thus
expected. However, to our surprise, we found that SD, which
uses fine-grained per-processor locks, does not scale either: it
achieves much lower average-case overheads than LITMUSRT,
but only at the expense of crippling worst-case overheads.

Based on the observation that the main scalability bottleneck
is not locking granularity per se, but rather the number of
processors that may access the same lock(s), we then sidestep
the global state management problem with a novel design based
on message passing. In our new design, processors report state
changes to a dedicated scheduling processor that is responsible
for all scheduling decisions. As a result, the global state is not
shared, scheduling decisions are implicitly serialized, and no
scheduler lock is ever accessed by more than two processors,
a potent combination that scales well: on a 64-core Intel Xeon
platform, we observed a 23x (resp., 36x) reduction in worst-case
scheduling overhead w.r.t. LITMUSRT (resp., SD).

A. Motivation: The Case for Global Scheduling

The defining property of a global scheduler is that each
task may execute on potentially any processor, depending on
availability and each task’s current priority. Implicit in this
definition is the reason why it is difficult to implement global
scheduling: to dynamically dispatch tasks according to processor
availability, and in accordance with the scheduling policy (e.g.,
in order of increasing deadlines under G-EDF), a globally
consistent snapshot of the entire system state is needed. As
globally shared (and frequently changing) state is well known
to be a scalability bottleneck, it is not surprising that global
schedulers are inherently more afflicted by runtime overheads
than partitioned schedulers (in which tasks are statically assigned
to processors and all dispatching decisions can be made locally).

Nonetheless, there are good reasons to not give up on global
scheduling. As already mentioned, (practical) optimal multi-
processor real-time schedulers are necessarily global. Further,
even if optimality of the scheduler is a secondary concern (or
none at all, as it is admittedly often the case in practice), global
scheduling offers advantages that make it preferable for certain
applications. For example, in adaptive systems (i.e., if task
requirements change at runtime in reaction to environmental
changes) and in open systems (i.e., if tasks may exit or join the
system dynamically), global scheduling is much easier to deal
with precisely because it dispatches tasks dynamically and hence
avoids the need for complex task mapping adjustments [12].

Other reasons speaking for global scheduling are that it is less
susceptible to deadline misses due to intermittent overloads (as
the load is spread across all processors) [23], that it offers lower
average-case scheduling latencies (because no processor idles
while any task is waiting) [23], that it is best suited for race-to-
idle energy conservation strategies [31], and that it permits much
simpler locking mechanisms (e.g., classic priority inheritance
works as expected under global scheduling, but is ineffective
under partitioned scheduling, see e.g. [13]).

To summarize, while global scheduling is not necessarily
the best approach for all real-time workloads, there exist many
applications that can benefit significantly from efficient OS
support for global real-time scheduling for reasons of flexibility,
optimality, and simplicity. Case in point: while Linux, QNX, and
many other commercial real-time OSs offer flexible scheduling
APIs that allow specifying arbitrary processor affinities [29],
they default to global scheduling.

B. Focus of This Paper

Motivated by the overhead challenges surrounding global
scheduling, our objective is to understand how global scheduling
policies may be efficiently supported on multicore platforms that
are large by today’s standards.

To this end, we study two mature and actively maintained
open-source versions of G-EDF in Linux as reference implemen-
tations reflecting the current state of the art. We focus on the G-
EDF policy in this paper for a number of reasons. For one, it has
received considerable attention in prior work [2, 5, 10, 23, 28]
and multiple independent implementations are readily available.
Further, it is well-suited for the (predominantly) soft real-time
workloads likely to be encountered on large multicore platforms
because it is optimal (in the sense that it is not subject to
utilization loss) if bounded deadline tardiness is permitted [24].
And finally, it is representative of the larger class of job-level
fixed-priority schedulers, which includes both fixed-priority
scheduling (the default in most commercial real-time OSs such
as QNX and VxWorks) and other interesting (soft) real-time
schedulers [26]. In short, if it is possible to scale G-EDF, then
many other interesting policies can be implemented similarly.

Contributions. The primary contribution of this paper is to
demonstrate that it is indeed possible to construct scalable global
schedulers: global scheduling is not inherently limited by kernel-
level lock and cache contention, though it is the case with many
existing implementations. To support this claim:

1) We first review the challenges inherent in global schedul-
ing and the designs of SD and LITMUSRT’s G-EDF
plugin, and identify key performance and correctness
limitations in Sec. II.

2) To overcome the scalability limitations of the current lock-
based solutions, we introduce a novel scheduler design in
Sec. III that is primarily based on message passing, and
in which the remaining locks are accessed in pairwise
fashion only.

3) We demonstrate that our design performs significantly
better at scale than either of the two major current G-EDF
implementations by means of average- and worst-case
overhead measurements across six multicore platforms
with 8, 16, 24, 32, and 64 cores in Sec. IV. For instance,
in the 64-core setup, the worst-case scheduling overhead
is reduced by a factor of 23 compared to LITMUSRT’s
G-EDF plugin, and by a factor of 36 compared to SD.

4) Finally, in Sec. V, we report on large-scale schedulability
experiments that show that the reduction in overheads
translates into significantly improved schedulability: when
considering soft real-time schedulability (i.e., bounded
tardiness) in the 64-core setup, our message-passing-based
implementation can support more than 120 additional real-
time tasks than the best prior implementation.

A secondary contribution of this paper is the first direct
comparison of LITMUSRT and SD on the same hardware
platform and with identical workloads, which is long overdue
given their similarity in aim and differences in design.

We review related work in Sec. VI, and begin with a discussion
of the scalability challenges posed by global scheduling.

II. SCALABILITY CHALLENGES

Before discussing the scalability limitations of existing imple-
mentations, we need to clarify the relevant metrics. In this paper,
we focus on the scalability of scheduling overheads: the costs of

making a scheduling decision and dispatching a task (discussed
in detail in Sec. IV), which should grow only slowly (or ideally
not at all) with increasing core counts.

Another source of overheads that affects tasks under global
scheduling are cache-related preemption and migration delays
(CPMD), which tasks incur due to a loss of cache affinity when
they resume execution after a preemption or migration. While
CPMD is a non-negligible source of overhead in practice (and
accounted for in the experiments in Sec. V), it is less relevant in
the context of this paper because CPMD is primarily hardware-
dependent (i.e., not affected by the kernel’s scheduler imple-
mentation). Further, CPMD is not specific to global scheduling,
but also affects partitioned (and semi-partitioned) scheduling,
whereas overhead scalability is a challenge specific to global
scheduling (partitioning is trivially scalable w.r.t. overheads).

In the following, we let m denote the number of processors,
and assume familiarity with the sporadic task model on behalf
of the reader. In short, a sporadic task releases a sequence of
jobs, where each job corresponds to an invocation of the task
and has an associated release time and deadline. From the point
of view of the Linux kernel, a sporadic task is simply a process
that more or less regularly becomes ready for scheduling. We
therefore use the terms ‘task’ and ‘job’ interchangeably when
discussing implementation matters. With these clarifications in
place, we next discuss why it is difficult for global schedulers to
maintain low overheads with increasing processor counts.

A. Requirements and Challenges

Implementing a correct global scheduler requires the main-
tenance or discovery of a consistent global snapshot of the
system that includes (i) the current task-to-processor mapping
(i.e., which tasks are scheduled) and (ii) the set of jobs that
are eligible to run but not scheduled (to determine whether a
preemption is required). Such a consistent view is necessary
to avoid priority inversions, that is, to ensure that the global
scheduling invariant is satisfied at all times: in a system with
m processors and r ready tasks, the min(m, r) highest-priority
tasks must be scheduled, where each task’s current priority is
determined by a policy such as EDF.

Given a consistent snapshot, making a correct scheduling
decision (i.e., one that maintains the global scheduling invariant)
is trivial. However, since scheduling events—job arrivals, com-
pletions, suspensions, and resumptions—may occur concurrently
on any processor, the state on which a scheduling decision is
based may be invalidated before the scheduler has finished
making its decision. There are two possible ways to deal
with this issue: serialize all scheduling events (as done in
LITMUSRT), thereby avoiding concurrent state changes, or
discard the invalidated decision and retry immediately (Linux
and SD use this technique). Unfortunately, both approaches
are problematic from a scalability perspective. Whereas the
former approach, if implemented with a global lock, introduces
an obvious contention hotspot, the latter can be problematic
because concurrent state changes may race repeatedly (i.e., a
processor may have to retry many times before arriving at a
consistent decision). Worse, both contention and the likelihood
of concurrent state changes increase with the number of cores.

In fact, this very issue—maintaining a task-to-processor assign-
ment that respects the global scheduling invariant in the face of
concurrent scheduling events—is the root of most complexity
and scalability issues in global schedulers.

Another, more analytical problem is posed by job release
interrupts. Jobs are typically released (i.e., in Linux, processes
become ready) in response to timer or device interrupts. Such
interrupts are thus an inherent aspect of global real-time
scheduling; however, they are not controlled by the scheduler.
Rather, interrupts are dispatched in hardware and always take
precedence over the OS’s scheduling policy. This deviation
from the scheduling policy causes considerable analytical
complications. Since most published schedulability tests do
not account for interrupts (e.g., see [23]), their delaying effects
must be accounted for separately prior to normal schedulability
analysis [19]. However, because it is in general not possible to
predict on which processor(s) a task will execute, it must be
assumed that, in the worst case, a job is delayed by all interrupts
that occur while it is pending [13, 19], which introduces
considerable pessimism. Minimizing the impact of job releases
on already scheduled jobs is thus an important goal in the
implementation of global schedulers [16].

To motivate the scalability problem further, and to illustrate
the impact of the just-described key issues, we next review the
two considered reference implementations and demonstrate their
lack of scalability on a 64-core Intel Xeon platform.

B. The Design and Scalability of G-EDF in LITMUSRT

LITMUSRT [1], a real-time extension of the Linux kernel
originally developed at UNC Chapel Hill, has included a G-
EDF plugin since its initial version [20]. The version considered
herein is called GSN-EDF because it was designed to support
suspension-based locking protocols and non-preemptable sec-
tions with O(1) priority inversions [11, 13]. GSN-EDF has been
the main G-EDF implementation of LITMUSRT since 2007 and
has remained structurally unchanged since then. It has also been
subject of several prior studies [7, 13, 16, 18, 20], which we
revisit in the context of this work in Sec. VI.

The design of GSN-EDF is straightforward and favors worst-
case predictability and conceptual simplicity over average-case
optimizations: a single global spin lock protects both the shared
ready queue (a binomial heap) and the processor mapping that
links tasks to processors, and also serializes all scheduling
decisions. This simple, coarse-grained synchronization approach
has the advantage that it is relatively easy to reason about
correctness, but obviously comes at a scalability tradeoff.

GSN-EDF’s lack of scalability is readily apparent in Fig. 1,
which shows an excerpt of the evaluation discussed in detail
in Sec. IV. In short, we measured the average and maximum
runtime overheads of GSN-EDF when managing 8, 16, 24, 32,
48, and 64 cores, respectively, of a 2 GHz 64-core Intel Xeon
machine. Fig. 1 depicts the maximum and average costs of two
key operations, namely the scheduling overhead (i.e., assigning
jobs to processors) and the release overhead (i.e., adding jobs to
the ready queue and triggering preemptions).

Both the maximum scheduling and release overheads exhibit a
strong dependence on m and quickly become excessive beyond

16-24 cores, exceeding 1,000µs and 600µs, respectively, at
48 cores. Worse, this trend also manifests in the average-case
overheads, which both reach about 500µs atm = 64. Given that
tasks with deadlines in the range of a few milliseconds are not
uncommon, scheduling overheads of more than one millisecond
are not viable and clearly show GSN-EDF’s lack of scalability.

Prior studies using GSN-EDF [2, 10, 23, 28] used platforms
with 4, 24, and 32 processors, a range in which GSN-EDF
still exhibits overheads that are moderate in the context of
Fig. 1. Nonetheless, in conjunction with the analytical limitations
of current interrupt accounting techniques, the high release
overheads proved problematic [16]. For this reason, GSN-
EDF supports dedicated interrupt handling [16, 38], where
a dedicated processor handles all release interrupts, and real-
time tasks are scheduled only on the other m − 1 processors
to shield them from interrupts. Given release overheads in the
range of hundreds of microseconds (as evident in Fig. 1), this is a
worthwhile tradeoff since the capacity lost to accounting-related
pessimism far exceeds the “loss” of one processor [16].

C. The SCHED DEADLINE Patch for Linux

The SD patch [27, 32, 33] for Linux was developed at the
Scuola Superiore Sant’Anna in Pisa and fundamentally differs
from GSN-EDF in both its design and its goal. While LITMUSRT

is primarily a prototyping framework and abstraction layer for
experimental real-time research, SD is a comparably mature
implementation that directly integrates with the kernel and aims
at eventual inclusion into mainline Linux. Its design hence
closely follows Linux’s push/pull architecture, which is based
on distributed, per-processor ready queues, each guarded by a
separate spin lock, which reduces both lock and cache contention
by minimizing data sharing across processors. GSN-EDF and SD
thus represent two extreme opposites: while in GSN-EDF global
coordination is the default (and all scheduling decisions are
serialized), in the push/pull design, most scheduling decisions
are made locally (and concurrently).

In Linux, a global policy such as G-EDF must be implemented
on top of the per-processor ready queues by explicitly load-
balancing the highest-priority tasks whenever local scheduling
events require a global adjustment (e.g. when new jobs are
released or when jobs complete). This is accomplished with
the eponymous push and pull operations, which enact source-
and target-initiated migrations, respectively, to maintain the
global scheduling invariant.1 Conceptually, pull operations scan
all other ready queues to “steal” backlogged higher-priority tasks
before a local scheduling decision is made, and push operations
move local backlogged tasks to other processors where they can
be scheduled immediately after a local scheduling decision was
made. In the actual implementation, these operations are not
invoked as part of every scheduler invocation; rather, processors
push whenever a new job is released or a local job is preempted,
and pull when a local job completes or suspends.

1While the Linux real-time scheduler defaults to global scheduling, it supports
specifying arbitrary processor affinities to restrict a task’s execution to a
subset of processors. This allows emulating partitioned, global, and hybrid
schedulers [29]. We focus on global affinities herein, as those are most difficult
to support—adding affinity restrictions makes the (runtime) problem easier.

��
����
�����
�����
�����
�����
�����
�����
�����
�����

�� ��� ��� ��� ��� ��� ��� ���

�
�
�
��
�
�
�
�
��
��
��
�
�

�������������������

��������������
��������������
�������������
�������������

Fig. 1: Scheduling and release overheads under GSN-EDF.
The average scheduling and release overheads coincide at this
resolution.

��
����
�����
�����
�����
�����
�����
�����
�����
�����

�� ��� ��� ��� ��� ��� ��� ���

�
�
�
��
�
�
�
�
��
��
��
�
�

�������������������

��������������
��������������
�������������
�������������

Fig. 2: Scheduling and release overheads under SD. The average
scheduling and release overheads coincide at this resolution.

Both operations require a pairwise acquisition of the relevant
per-processor locks in order to maintain consistency. To prevent
deadlocks, the locks are always acquired in order of increasing
processor indices, which may require processors to drop and
reacquire their local scheduler lock. To improve blocking time
in the average case, the local lock is always dropped in Linux
and both source and target locks are reacquired in order.

In summary, the push/pull design underlying the SD sched-
uler strives to avoid scalability bottlenecks by limiting cache
contention through the use of per-processor run queues, and
by using fine-grained, per-processor locks. Consequently, our
starting assumption was that SD would easily and consistently
outperform GSN-EDF. Surprisingly, we found that the push/pull
design works both really well and not at all: as shown in Fig. 2,
it yields very low average-case overheads, but it is also subject
to excessive worst-case overheads.

On the positive side, our experiments show that the more
sophisticated locking mechanism is very useful for coping with
contention in the average case. We found the average-case
overheads to remain low throughout the tested range, and well
below 100µs even for m = 64. From a throughput perspective,
SD thus performs excellently, and much better than GSN-EDF.

However, from a (hard) real-time perspective, the results are
troublesome, as the maximum observed overheads clearly do not
scale well. In fact, in some configurations, SD exhibits maximum
overheads more than five times worse than the much simpler
GSN-EDF: for instance, for m = 24, the maximum scheduling
overhead of GSN-EDF is roughly 180µs, whereas SD already
exceeds 1,000µs. In the extreme of m = 64, we even observed
scheduling overheads approaching 4.5ms , which demonstrates
a total lack of scalability w.r.t. worst-case overheads.

D. Root Causes: Transitive Blocking and Push Failures

As we set out to investigate the scalability of G-EDF imple-
mentations, our initial assumption was that per-processor state

and locks as employed by SD would “naturally” be the most
promising approach, a fallacy that we believe to be widespread.
In fact, to the best of our knowledge, our experiments are
the first to demonstrate that, w.r.t. maximum overheads, the
push/pull approach scales significantly worse than a single,
coarse-grained lock. In the end, it turns out that “simulating”
a unified global state from multiple distributed states requires
complex synchronization logic (e.g., scanning operations, the
release and reacquisition of locks, complex interaction among
processors, etc.), which is detrimental to worst-case overheads.

A key reason for the observed spikes is that fine-grained
locking gives rise to pathological, difficult to anticipate blocking
scenarios when multiple processors push and pull simultane-
ously. While the per-processor locks are on average accessed
by only a handful of processors, it is possible for any lock to
be contested by all processors at the same time. Further, due
to the scanning operations and the need for pairwise ordered
lock acquisitions described above, this effect can escalate
due to transitive blocking when high-contention scenarios are
encountered on every outer and every nested lock acquisition.

The case for push/pull-based designs is further weakened
by an “optimization” inherited from stock Linux’s push/pull
scheduler that prevents SD from maintaining the global invariant
at all times (i.e., priority inversions, though likely infrequent,
are possible with the current implementation). The problem
arises because a push operation may fail as follows. To carry
out a push migration, the source processor first searches for
the processor that is currently executing the lowest-priority task
(i.e., earliest-deadline task in SD) by iteratively examining all
processor states. After the target processor has been identified,
its lock is reacquired to enact the migration. However, in the
mean time while the source processor was not holding the target
processor’s lock, the target processor’s state may have changed,
thus invalidating the decision. Specifically, after deciding to
migrate a task Ti to a processor Pk, a new, higher-priority
task may arrive on Pk, either because it resumes or because
another processor pushes first (as described in further detail
in [13, Ch. 3] in the context of the stock Linux fixed-priority
push/pull scheduler). This poses a fundamental question: in a
push/pull design, how often must a processor retry a failed push
operation in the worst case?

In the current SD implementation (version V8), if a push
operation fails three times, then it is abandoned and the task
is kept in the local queue even if that violates the global
scheduling invariant. However, a retry limit of three is clearly
insufficient, since with tens of cores and hundreds of tasks, it
is certainly possible that more than three higher-priority tasks
arrive concurrently with a push operation. Unfortunately, the
hard-coded retry limit exists for a reason: correcting it would
likely cause a further increase in (worst-case) overheads due to
additional contention from repeatedly failing push operations.

Finally, it should be noted that overheads were measured
while executing simple, periodic, CPU-bound, synchronously2

released real-time tasks, as explained in Appendix A. The
2In a synchronous task set release, all tasks release their first job at the same

time, which ensures that all tasks share a common time zero. In our case, the
synchronous release serves to provoke worst-case contention and overheads.

synthetic benchmark tasks used to evaluate SD correspond to the
standard workload used to benchmark LITMUSRT (see Sec. IV)
and mimic well-behaved recurrent real-time applications such as
process control or signal processing tasks. We thus believe this
to be a fair and relevant assessment of the two G-EDF implemen-
tations, but note that “antagonistic” tasks could likely provoke
even higher overheads under either scheduler. Nonetheless, the
results allow us to identify the central scalability bottleneck.

E. Scalability Implications

In the end, we found that neither fine-grained nor coarse-
grained locking scales particularly well. This is because the true
bottleneck is not lock granularity, which is more relevant in
a throughput context, but rather peak contention, that is, the
number of processors that potentially access the same lock(s).
Peak contention, however, cannot be reduced by splitting the
shared global state into ever finer pieces that still must be shared
among all processors. To the contrary, due to transitive blocking,
m processors sharing m locks in a nested fashion suffer larger
worst-case delays than m processors sharing a single lock.

Ideally, a scheduler should have the simplicity of GSN-EDF,
provide average-case overheads close to those of SD, and provide
worst-case overheads as predictable and simple to reason about
as those of GSN-EDF (but preferably lower). In the following,
we present a novel G-EDF implementation, based on message
passing instead of state sharing, that comes much closer to these
goals than any prior implementation known to us.

III. GLOBAL SCHEDULING VIA MESSAGE PASSING

The use of message passing is a growing trend in recent work
on multicore scalability [9, 22, 34]. Its main advantage is that it
makes sharing explicit and forces algorithm designs that inher-
ently provide data isolation and reduce sharing. In the following,
we show that message passing is also a viable implementation
technique at the timescale of a real-time scheduler. We begin
with an overview of G-EDF-MP’s design, our new message-
passing-based G-EDF implementation, and provide a detailed
description of how it operates in Sec. III-B.

A. Design Overview

As discussed in Sec. II, our solution is motivated by the
fact that large overheads from peak contention and cache-line
sharing arise because each processor must coordinate with other
processors to generate a globally consistent snapshot of the
system prior to making a decision.

G-EDF-MP avoids these two issues through a simple tradeoff.
Taking dedicated interrupt handling as already implemented in
GSN-EDF a significant step further, it declares a single dedicated
scheduling processor (henceforth the DSP) to be responsible for
all scheduling decisions and all device and timer interrupts. The
rest of the client processors in the system simply carry out the
decision made by the DSP. To avoid analytical complications, the
DSP itself does not execute any real-time tasks, which execute
only on the shielded client processors.

Since only the DSP makes decisions, it is the only processor
that needs to have a global view of the system. G-EDF-MP thus
maintains this view locally in the DSP: ready queue updates do

DSPDSP

State

Clients

IPIs

Shared

Mailbox

linked

scheduled

L S

... 123

L S L S L S

Fig. 3: Structural overview of G-EDF-MP.

not require any locking, to the effect that job release interrupts
cannot be delayed by lock contention.

However, for reasons of efficiency, G-EDF-MP is not a “pure”
message-passing-based implementation, as it still uses some
locks to synchronize the assignment of tasks to clients. In
particular, the DSP-to-client communication is carried out with
two lock-protected task pointers per client, which the DSP
updates in order to indicate task assignments. However, the
peak contention of these locks is limited because (i) they are
never acquired in a nested fashion, and (ii) they are subject to
only pairwise sharing (by the DSP and the particular client).

The DSP uses inter-processor interrupts (IPIs) to notify
clients when a particular decision requires an immediate preemp-
tion. Similarly, a client communicates local scheduling events
(e.g. job completions, suspensions, etc.) to the DSP by writing
a message to one of a small number of shared, wait-free FIFO
mailboxes and sending an IPI as a notification. This allows the
DSP to keep track of the global state of the system and to react
as clients become available for other work.

Overall, the G-EDF-MP approach is conceptually simple, but
requires careful implementation choices, which we discuss next.

B. The G-EDF-MP Data Structures

Fig. 3 provides an overview of the system. The DSP uses
its local DSP state to make scheduling decisions. The clients
have a small per-client state that is protected by per-client locks
(not shown), which indicates the assigned and scheduled tasks.
Preemptions are enacted by the DSP by modifying a client’s
state and sending an IPI. Clients communicate with the DSP by
writing to a shared mailbox and sending an IPI to the DSP.

Per-client state. G-EDF-MP is conceptually based on the link-
based scheduling approach first introduced with GSN-EDF [17].

Link-based scheduling tracks two task pointers for each
processor, the linked task that should be scheduled, and the
scheduled task that currently is scheduled. The DSP updates
the linked task as required to maintain the global scheduling
invariant, and the client is responsible for tracking linked
with scheduled as quickly as possible by context-switching
to linked whenever the DSP updates the assignment. (This
delay is accounted for analytically in Appendix B.)

The two main advantages of link-based scheduling are that it
enables the implementation of non-preemptable critical section
support with O(1) priority inversion [13, 15] (though this is not
yet activated in G-EDF-MP), and that it cleanly decouples the
logical scheduling aspects as dictated by the scheduling policy
from the peculiarities of hardware and process management [13].

Each client’s linked and scheduled fields are protected
by a spin lock. Only clients may change their scheduled

Job (T2) Arrival

DSP

ClientT1

Suspension

IPI

Link &

Preempt
Completion

IPI

Link &

Preempt

IdleT2 T1 Idle

1

2

4 6

Suspension3 Completion5

Fig. 4: Overview of G-EDF-MP operations.

pointer, but both the DSP and the clients update the linked
pointers: clients invalidate their linked pointer to indicate job
completions or suspensions, and the DSP updates the linked
pointer to assign new work. In contrast, under GSN-EDF, all
processors may relink any other processor and all linked and
scheduled pointers are protected by a single lock.

DSP state. The DSP state consists of (i) a ready queue of
tasks that are ready to execute but are waiting to be linked,
(ii) binomial heaps and timers tracking future job releases,3 and
(iii) a copy of each client’s state (e.g. which task is linked to,
whether it is idle etc.) that is updated whenever the DSP changes
linked or when a client reports idleness. Part (iii) is used
to detect when preemptions become necessary. The DSP uses
a copy of the client state (rather than accessing it directly) to
improve cache locality and to avoid having to lock per-client
states during preemption checks, which are frequently required.
Notably, the DSP state is not protected by any locks since it is
accessed only by the DSP with disabled interrupts.

Shared mailbox. The mailbox enables asynchronous client-to-
DSP communication, where each message consists of a pointer
to a callback function, the sender ID, and the task that triggered
the scheduling event. It consists of a small number of Feather-
Trace buffers [17], which support wait-free writes so clients
never block when sending messages.4 To take advantage of the
cache topology, there is one mailbox per socket that is shared
only by cores on the same die (and the DSP). The DSP services
message buffers in a round-robin fashion to avoid starvation, and
briefly enables interrupts between messages (lest latency spikes
arise). We next describe the main scheduling events.

C. The G-EDF-MP Operations

There are six major message types in G-EDF-MP, as illustrated
in Fig. 4, which shows a sequence of events and messages.

1) When a job is released or resumed by an external event,
the DSP receives an interrupt (since we use dedicated interrupt
handling) and the associated handler is executed. Otherwise, if a
task is woken up by another task on a client, the DSP is notified
by the client via a message. In either case, the DSP immediately
links the task to an idle core if one is available, and otherwise
checks whether a preemption is in order. Since the DSP has a

3LITMUSRT provides binomial heaps to enable the release of many jobs at
once with efficient O(logn) merge operations [18]. G-EDF-MP simply reuses
the existing infrastructure, with the difference that no locking is required.

4We chose Feather-Trace buffers because they are readily available in
LITMUSRT as part of the overhead tracing infrastructure. In future work, it
may be interesting to evaluate whether specific-purpose, single-writer, cache-
coherency-friendly message buffers [9, 22] achieve even lower overheads.

copy of all current task assignments, these decisions are made
purely locally without any lock acquisitions.

In Fig. 4, the DSP decides that the newly arrived task T2

should preempt task T1 on the depicted client processor. To enact
the preemption, the DSP acquires the client’s lock, updates its
linked pointer, and sends an IPI. After releasing the client’s
lock, the DSP adds the unlinked task T1 back into the ready
queue. Note that T1 remains scheduled until the client receives
the IPI, which illustrates the separation of logical and physical
processor management in link-based scheduling.

2) When a client processor receives a rescheduling IPI, it
locks its local state and simply checks whether linked differs
from scheduled, and if so atomically updates scheduled
to indicate that it has picked up the link change. It then unlocks
its local state and carries out a context switch to the new task.

3) When a job suspends on a client processor, it immediately
becomes unavailable for execution. Hence, the client invalidates
its linked field to indicate that it is idle and sends a message
to the DSP to communicate its availability. Since the client at
this point does not have information about which job to schedule
next (or even whether more jobs are pending), it simply idles (or
services non-real-time background tasks).

Introducing idle time of course introduces additional delays
for any pending real-time tasks, which must be reflected when
accounting for overheads, as we discuss in Appendix B. Note
that this idle time is not in conflict with the fact that G-
EDF is a work-conserving policy. In any practical scheduler
implementation, processors incur brief periods of unavailability
while selecting the next task to dispatch, regardless of whether
this is realized with locking or message passing mechanisms.

4) When the DSP is notified of a suspension, it discards the
suspending task from its data structures. The suspending task
will be “reintroduced” to the scheduler when it is later resumed
by an interrupt or another task—see (1) above. Note that a
suspending task might already be queued in the ready queue
if a preemption IPI sent from the DSP to the client raced with a
suspension IPI sent from the client to the DSP. In general, since
G-EDF-MP intentionally aims to decouple clients from the DSP
as much as possible for scalability reasons, many potential race
conditions among in-flight events must be handled.

Since a suspension message implies that the sending client
became idle, the DSP links the highest-priority job in the ready
queue to the sender (if any). In the example in Fig. 4, the DSP
links T1 to the client and sends a preemption IPI, which causes
T1 to be dispatched as discussed in (2) above.

5) When a job completes on a client processor, the client
reacts as in (3): it invalidates linked and notifies the DSP.

6) When the DSP is notified of a completion, if the job
completed before its next release time, the DSP programs a
local timer for the next job release; otherwise, if the job was
tardy, it adds the task immediately back into the ready queue.
Either way, it selects the highest-priority job in the ready queue
(if any) and assigns it to the sender.

Concurrency challenges. The preceding list of events covers
the major scheduling operations in G-EDF-MP. While the design

is intentionally simple at the conceptual level, several corner
cases must be correctly dealt with in practice. For example,
since an unlinked task Ti in the ready queue may remain briefly
scheduled on some processor Pk (until the client’s “is”-state
catches up with the “should”-state), it may be picked by the DSP
and linked to some other processor Pl that scheduled some other
task Tj . In such a case, Pl must delay its context switch from Tj
to Ti until Pk ceases to use Ti’s kernel stack.

This, however, becomes problematic if subsequently Tj is
assigned to Pk—a deadlock results, as Pl uses Tj’s kernel
stack while it waits for Pk to release Ti’s kernel stack, and
vice versa. If left unchecked, this can happen as a result of
short suspensions (e.g., due to I/O), and must be detected and
resolved by swapping the links of Ti and Tj . To avoid such
situations altogether, G-EDF-MP performs link swaps whenever
it links a still-scheduled task. To allow the DSP to reliably detect
still-scheduled tasks, clients must check linked and update
scheduled atomically, as discussed in operation (2).

While such corner cases add some implementation complexity,
they do not affect the overheads and scalability of G-EDF-MP
negatively, as we show next.

IV. EVALUATION

To assess the scalability of G-EDF-MP, SD, and GSN-EDF
in terms of average and maximum overheads, we conducted
extensive experiments on a 64-core Intel Xeon X7550 2.0 GHz
platform using LITMUSRT version 2013.1 and version V8 of
the SD patch, both based on Linux 3.10. Features that lead to
unpredictability such as hardware multithreading, frequency
scaling, and deep sleep states were disabled for all kernels,
along with every kernel configuration option associated with
debugging. All non-essential background services such as cron
were disabled. For each m ∈ {8, 16, 24, 32, 48, 64}, each of the
three kernel versions was compiled with support for at most m
processors and booted on the test platform.

Overheads were measured with Feather-Trace [17], a
lightweight tracing framework included in LITMUSRT. As
Feather-Trace was not built with large core counts in mind,
the stock version uses a single, shared trace buffer, which
itself creates a scalability bottleneck at higher core counts. To
resolve this, we changed Feather-Trace to record most samples
in processor-local buffers. We also added support for coping
with non-synchronized cycle counters by determining each
processor’s cycle counter offset prior to each experiment.

For each m and for each n ∈ {m, 2m, . . . , 10m}, we
generated five task sets with n synthetic tasks using Emberson
et al.’s task set generator [25]. Task sets were generated with a
target utilization chosen uniformly at random from [0.4m, 0.8m]
and periods drawn from a log-uniform distribution in the range
[10ms, 100ms]. Each task set was executed for 30 s under
each of the following four schedulers: G-EDF-MP, SD, GSN-
EDF without dedicated interrupt handling, and GSN-EDF with
dedicated interrupt handling (GSN-EDF-DI hereafter). Note
that real-time tasks execute on only m − 1 of the m cores
under G-EDF-MP and GSN-EDF-DI. We ran a cache-thrashing
background workload to provoke maximum memory hierarchy

Client

DSP

T1 Idle T1

Release
Interrupt

Interrupts
Disabled

s s sc c c

Schedule Context Switch CPMD

Release
Overhead

DSP
Handler

Release
Latency

IPI
Latency

IPI
Latency

CPU
Request

T2T2

Tick

t

Fig. 5: Overview of G-EDF-MP runtime overheads.

contention. In total, we traced 1,200 task sets during ten hours
of real-time execution and collected over 7 billion raw samples.

Next, we discuss the different runtime overheads that delay
real-time tasks, which are all traced individually in LITMUSRT.

A. Measured Runtime Overheads

In the case of G-EDF-MP, nine major overhead sources affect
a task’s response time, which are illustrated in Fig. 5.

First, a task incurs release event latency (∆ev) if its triggering
interrupt is delayed because the DSP disabled interrupts. Release
overhead (∆rel) reflects the cost of processing the release
interrupt, including all ready queue updates, preemption checks,
and link changes. After the link change, the DSP sends a
rescheduling IPI, which incurs IPI latency (∆ipi) due to in-
terconnect contention and when the recipient disabled interrupts.

On the client, the task incurs scheduling overhead (∆sch)
while the kernel selects the next task to be dispatched; this
overhead includes any blocking delays incurred when accessing
the scheduler state. Finally, context-switch overhead (∆cxs) is
incurred when switching kernel stacks. While executing, a real-
time task can be delayed by the periodic timer tick (which fires
once every millisecond), incurring tick overhead.

Two overheads specific to G-EDF-MP are the IPI sent to notify
the DSP of pending messages and the time spent by the DSP
reacting to messages. Regarding the former, we distinguish
between ∆ipi, the latency of normal reschedule IPIs sent to
trigger the scheduler on a remote processor, and client request
latency (∆req), which reflects the delay from the time that a
client sends a message to the DSP until the DSP dequeues
that specific message. Regarding the latter G-EDF-MP-specific
overhead, each message has a corresponding callback function,
the invocation of which causes DSP handler overhead (∆dsp).

CPMD (∆cpd) affects a task when it reloads cache contents
after a preemption or migration. CPMD is not affected by the
choice of G-EDF implementation and was measured separately
using the method proposed by Bastoni et al. [8].

With the exception of the client request latency and DSP
handler overhead, all of the just-discussed overhead sources also
affect GSN-EDF, GSN-EDF-DI, and SD. To obtain comparable
measures for SD, we ported Feather-Trace to the SD kernel (but
did not introduce any other changes). Further, the scheduling
overhead ∆sch is actually measured in two parts (before and
after the context switch); we report the aggregate measure here.
In contrast to earlier LITMUSRT-based studies [7, 16, 18], we
did not apply any statistical outlier filters (which made possible

by recent LITMUSRT improvements [14]). Finally, it is also
worth mentioning that synchronously releasing all tasks (as
discussed in Sec. II-D and Appendix A) creates a challenging
benchmark, as it forces all real-time tasks to be activated together.
The overhead measurements that were obtained thus reflect very
unfavorable scenarios in terms of contention.

All graphs are available online [21]. Due to space constraints,
we discuss only the most pertinent trends in the following.

B. Experimental Results

As already shown in Figs. 1 and 2, GSN-EDF does not scale
well w.r.t. both average- and worst-case overheads, and SD does
not scale well w.r.t. worst-case overheads. The key questions
thus are, (i) does G-EDF-MP scale well with the number of cores
and the number of tasks, and (ii) does G-EDF-MP achieve low
average-case overheads similar to SD?

We begin with question (i), and the answer is clearly yes.
Fig. 6(a) shows the maximum observed scheduling overhead as
a function ofm. While the maximum scheduling overhead under
GSN-EDF and SD increases from 40.19µs and 52.11µs, resp.,
at 8 cores to 2759.04µs and 4337.55µs, resp., at 64 cores, the
scheduling overhead under G-EDF-MP increases from 12.75µs
to only 119.37µs; a relatively modest increase and a 23x and
36x improvement over GSN-EDF and SD, resp.

Similar trends are observed with increasing n, as shown in
Fig. 6(c), which depicts ∆sch as a function of n for m = 48.
Whereas the maximum scheduling overhead under GSN-EDF,
GSN-EDF-DI, and SD either already start high or reveal large
upwards slopes, G-EDF-MP maintains near-constant overheads
around 60µs for the entire range of tested task set sizes. These
trends are not surprising, since GSN-EDF, GSN-EDF-DI, and
SD must acquire one or more globally shared locks (for which
contention increases with m) and manipulate ready queues
(which grow in size with n) as part of each scheduler invocation.
Further, overheads under SD are strongly affected by increasing
n since a larger number of tasks increases the frequency of
scheduler invocations, which increases the likelihood of push
failures and transitive blocking. In contrast, each client state lock
in G-EDF-MP is accessed by only two processors, and clients
never access the ready queue—the client-side scheduler is O(1).

GSN-EDF and GSN-EDF-DI exhibit mostly similar trends,
with overheads slightly lower under GSN-EDF-DI simply be-
cause one fewer core participates in the scheduling, thereby
reducing peak contention slightly.

The major difference in scalability between the primarily lock-
based schedulers and G-EDF-MP also manifests in the maximum
release overhead as shown in Fig. 6(b). The overhead under
G-EDF-MP exhibits quicker growth than in Fig. 6(a) due to
O(log n) updates to the ready queue (a binomial heap) and
O(m) preemption checks. Still, G-EDF-MP exhibits much lower
maximum release overhead than its counterparts afflicted by
lock contention: for m = 64, the maximum release overhead
exceeds 1700µs and 1500µs under GSN-EDF and SD, resp.,
whereas G-EDF-MP stays well below 275µs.

To answer question (ii), consider the plots of average-case
scheduling and release overheads shown in Figs. 6(d) and 6(e),
resp. As discussed in Sec. II, GSN-EDF does not scale well in the

average case, which also extends to GSN-EDF-DI, whereas SD
has no problems scaling in the average case (since pathological
contention is rare). G-EDF-MP in turn exhibits still lower
scheduling overheads, as seen in Fig. 6(d) (at m = 64, ∆sch =
3.04µs under G-EDF-MP vs. ∆sch = 48.48µs under SD).

In Fig. 6(e), G-EDF-MP exhibits somewhat higher average
release overheads than SD (at m = 64, ∆rel = 109.40µs
under G-EDF-MP vs. ∆rel = 65.67µs under SD), but more
importantly, the overhead under G-EDF-MP grows only slowly
from m = 8 to m = 64, in contrast to GSN-EDF (which is
below 6µs at m = 8, but exceeds 475µs at m = 64).5 We
conclude that G-EDF-MP already performs reasonably well in
terms of average-case overheads, but also believe that there is
room for further low-level code optimizations in the future.

Although the trends are promising so far, there is no silver
bullet for multicore scalability—the design of G-EDF-MP in-
troduces new overheads that also need to be considered. These
are shown in Fig. 6(f), which depicts the average and maximum
client request latency and the DSP handler cost.

The DSP handler cost is not particularly problematic since it
is dominated by ready queue and preemption checks and thus
grows only slowly with m, just like the release overhead.

The client request latency is determined by three factors: how
long the DSP disables interrupts, how expensive it is for the
DSP to dequeue a message, and how many messages are already
queued (recall that each message buffer is FIFO-ordered). To
keep the first factor low, the DSP enables interrupts between
any two messages. Concerning the second factor, reading the
mailbox becomes more expensive with growing core counts as
more processors send messages concurrently. However, since
we use per-socket mailboxes, this increase is relatively small.

The third factor, the length of the message queue, is the main
bottleneck of G-EDF-MP—with an increasing number of clients,
the peak contention in terms of simultaneous message arrivals
naturally grows as well. This can be clearly seen in Fig. 6(f),
where the maximum client request latency grows quickly with
m. The average client request latency, however, is not strongly
affected by this—again, peak contention is a rare event.

Finally, to offer further support for our claims and to illustrate
how overheads vary with increasing task counts, Fig. 7 depicts
six additional graphs showing scheduling overheads, release
overheads, DSP handler overheads, and client request latency as
a function of n on the 32-core platform. The general trend is that
G-EDF-MP performs well w.r.t. the overheads encountered by all
schedulers—in insets (a), (b), (d), and (e), G-EDF-MP exhibits
the lowest overheads of the four schedulers for any n. In fact,
in special cases, G-EDF-MP achieves even up to two orders of
magnitude lower overheads than the reference implementations:
the maximum observed scheduling overhead under G-EDF-MP
is ≈17µs vs. ≈1740µs under SD, as apparent in Fig. 7(a).
Finally, Fig. 7(c) confirms that client request latency is the main
bottleneck w.r.t. worst-case overheads, but not a major problem
w.r.t. average-case overheads, and Fig. 7(f) shows that the cost

5Release operations are costly in both GSN-EDF and GSN-EDF-DI because,
in the worst case, all tasks are released simultaneously and every processor must
be preempted, which requires many updates of the global state and results in
significant lock and cache contention.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 40 48 64

o
v
e
rh

e
a
d
 (

µ
s)

number of processors (m)

GSN-EDF
GSN-EDF-DI

G-EDF-MP
SD

(a) Maximum scheduling overhead (m ∈ [8, 64])

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 8 16 24 32 40 48 64

o
v
e
rh

e
a
d
 (

µ
s)

number of processors (m)

GSN-EDF
GSN-EDF-DI

G-EDF-MP
SD

(b) Maximum release overhead (m ∈ [8, 64])

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 48 96 144 192 240 288 336 384 432 480

o
v
e
rh

e
a
d
 (

µ
s)

number of tasks (n)

GSN-EDF
GSN-EDF-DI

G-EDF-MP
SD

(c) Maximum scheduling overhead (m = 48)

 0

 100

 200

 300

 400

 500

 600

 8 16 24 32 40 48 64

o
v
e
rh

e
a
d
 (

µ
s)

number of processors (m)

GSN-EDF
GSN-EDF-DI

G-EDF-MP
SD

(d) Average scheduling overhead (m ∈ [8, 64])

 0

 100

 200

 300

 400

 500

 600

 8 16 24 32 40 48 64
o
v
e
rh

e
a
d
 (

µ
s)

number of processors (m)

GSN-EDF
GSN-EDF-DI

G-EDF-MP
SD

(e) Average release overhead (m ∈ [8, 64])

 0

 100

 200

 300

 400

 500

 8 16 24 32 40 48 64

o
v
e
rh

e
a
d
 (

µ
s)

number of processors (m)

CPU request (max)
CPU request (avg)
DSP handler (max)
DSP handler (avg)

(f) Average & maximum G-EDF-MP overheads
(m ∈ [8, 64])

Fig. 6: Runtime overheads under GSN-EDF, GSN-EDF-DI, SD, and G-EDF-MP. Note that each graph uses a different scale due to
the wide range of observed overhead magnitudes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 32 64 96 128 160 192 224 256 288 320

o
v
e
rh

e
a
d
 (

µ
s)

number of tasks (n)

GSN-EDF
GSN-EDF-DI

G-EDF-MP
SD

(a) Maximum scheduling overhead (m = 32)

 0

 100

 200

 300

 400

 500

 600

 32 64 96 128 160 192 224 256 288 320

o
v
e
rh

e
a
d
 (

µ
s)

number of tasks (n)

GSN-EDF
GSN-EDF-DI

G-EDF-MP
SD

(b) Maximum release overhead (m = 32)

 0

 50

 100

 150

 200

 32 64 96 128 160 192 224 256 288 320

o
v
e
rh

e
a
d
 (

µ
s)

number of tasks (n)

Maximum
Average

(c) Client request latency (m = 32)

 0

 20

 40

 60

 80

 100

 120

 32 64 96 128 160 192 224 256 288 320

o
v
e
rh

e
a
d
 (

µ
s)

number of tasks (n)

GSN-EDF
GSN-EDF-DI

G-EDF-MP
SD

(d) Average scheduling overhead (m = 32)

 0

 20

 40

 60

 80

 100

 32 64 96 128 160 192 224 256 288 320

o
v
e
rh

e
a
d
 (

µ
s)

number of tasks (n)

GSN-EDF
GSN-EDF-DI

G-EDF-MP
SD

(e) Average release overhead (m = 32)

 0

 5

 10

 15

 20

 32 64 96 128 160 192 224 256 288 320

o
v
e
rh

e
a
d
 (

µ
s)

number of tasks (n)

Maximum
Average

(f) DSP handler overhead (m = 32)

Fig. 7: Additional results showing overheads as a function of increasing n for m = 32. Note that each graph uses a different scale
due to the wide range of observed overhead magnitudes.

per DSP operation is virtually constant.
Overall, our data shows G-EDF-MP to scale much better than

either GSN-EDF or SD in the tested range of up to 64 cores.
Nonetheless, G-EDF-MP is obviously not arbitrarily scalable as
the DSP eventually becomes a bottleneck, albeit at much higher
processor counts than in prior lock-based schedulers.

Next, we discuss whether G-EDF-MP’s improved overhead
scalability translates into analytical benefits as well.

V. SCHEDULABILITY EXPERIMENTS

Since message passing introduces new sources of delays, just
comparing the magnitude of overheads does not provide a com-
plete view of G-EDF-MP’s performance. Rather, overhead-aware
schedulability analysis that accounts for all runtime overheads
is necessary. We therefore performed extensive overhead-aware

schedulability experiments to assess the impact of overheads on
each of the four implementations. Before presenting the main
results, we briefly summarize our experimental setup.

A. Experimental Setup

We evaluated the four schedulers (GSN-EDF, GSN-EDF-DI,
SD and G-EDF-MP) w.r.t. two criteria: soft real-time schedu-
lability, by checking if a task set has bounded tardiness [24]
after accounting for average-case overheads, and hard real-time
schedulability, by applying a collection of G-EDF schedulability
tests [2, 5, 10, 28] after accounting for worst-case overheads.
Runtime overheads were accounted for using standard tech-
niques as described in Appendix B. For increased breadth, we
employed two different task set generation methods; one used
in prior LITMUSRT studies [13, 16, 18] and one proposed by

Emberson et al. [25].
First, we evaluated schedulability as a function of n using

task sets similar to those used in previous LITMUSRT studies
(see [13, Ch. 4] for a detailed description). In short, each task
set is generated by independently drawing n utilizations and
periods. Utilizations were drawn from one of six distributions:
three exponential distributions ranging over [0, 1] (with means
0.1, 0.25 and 0.5), and three uniform distributions (ranging over
[0.1, 0.2], [0.1, 0.4] and [0.5, 0.9]). Periods were chosen from
uniform and log-uniform distributions across several ranges
([1, 1000], [10, 100], [10, 1000], [3, 33], and [200, 1000], in ms).

In the second set of experiments using Emberson et al.’s
task set generation method [25], we assessed the impact of
increasing the total utilization for a fixed n. We varied n ∈
{2m, 3m, . . . , 10m} and considered both uniformly and log-
uniformly distributed periods in the range [1, 1000].

Both methods were used to assess the schedulability for
each m ∈ {8, 16, 24, 32, 48, 64}. For each sampling point, we
generated and tested 1,000 task sets.

In total, we evaluated more than 1,000 parameter config-
urations. Due to space constraints, we highlight here two
configurations that reveal a significant analytical impact. The
complete set of results is available online [21].

B. Results

Fig. 8(a) shows a result depicting soft real-time schedulability
for m = 64 as a function of n. The achieved soft real-time
schedulability is shown for each of the four evaluated imple-
mentations and also for two hypothetical G-EDF configurations
assuming zero overheads on m and m−1 processors, to provide
an upper bound and to show the cost of using a DSP. In Fig. 8(a),
GSN-EDF and SD achieve zero schedulability for all task counts
due to the pessimism involved in interrupt accounting (recall
that GSN-EDF-DI and G-EDF-MP shield real-time tasks from all
interrupts, whereas tasks may be delayed by release interrupts
in SD and GSN-EDF). Under G-EDF-MP, bounded tardiness is
maintained up to n = 448, whereas GSN-EDF-DI starts to decay
already at n = 128 and reaches zero schedulability at n = 320.
Here, G-EDF-MP can support more than 120 additional tasks,
thereby halving the distance to the theoretical upper bound.

Fig. 8(b) shows hard real-time schedulability as a function of
total utilization (for a fixed n). As in Fig. 8(a), interrupt-related
pessimism renders GSN-EDF and SD completely unschedulable.
About one third of the task sets are schedulable under GSN-EDF-
DI until reaching a total utilization of about 20. In contrast, about
70% of the task sets are schedulable under G-EDF-MP until
reaching a total utilization of about 24, where the theoretical
upper bound starts to decrease as well. Again, G-EDF-MP halves
the gap to the theoretical upper bound.

Fig. 8(b) also exhibits G-EDF’s inherent hard real-time
limitations: even when assuming overhead-free execution, hardly
any task set with a total utilization greater than 50% can be
claimed schedulable. However, in the context of this work, G-
EDF’s algorithmic limitations are irrelevant because G-EDF-
MP’s low-overhead design can be easily transferred to other
global schedulers (such as global fixed-priority scheduling or

��

����

����

����

����

��

�� �� ��� ��� ��� ��� ��� �	� �	� ��� ��� ��� �
� �
� ��� �����
���
��
���
	

��
�
��
��
���
��
��
��
�

������������������

������������������ �!"
������������������ �!����"

�#$������!"

�#$������%��!����"
#&'�����(�)%$���!"

������*+��!����"

��

����

����

����

����

��

��� ��� ��
���
��
��
�
�
�
�
�
�
��
�
��
��
�
�
�
��
�
��

�������������������

(a) Soft schedulability as a function of n for exponentially distributed task
utilizations with mean 0.1 (as in [13, 16, 18]).

��

����

����

����

����

��

�� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �����
���
��
��
�
�
�
�
�
�
��
�
��
��
�
�
�
��
�
��

��������������������

(b) Hard schedulability as a function of total utilization based on Emberson et al.’s
method [25] with n = 5m.

Fig. 8: Comparison of hard and soft schedulability for m = 64.
Periods were drawn from a log-uniform distribution with range
[1ms ,1000ms].

earliest-deadline-until-zero-laxity scheduling (EDZL) [3], which
can offer higher hard real-time schedulability).

Overall, the schedulability experiments confirm that G-EDF-
MP’s lower overheads translate into significantly higher schedu-
lability at high core counts. At lower core counts (i.e., m ≤ 16)
and with fewer tasks, overhead scalability is not yet an issue and
G-EDF-MP performs similarly to GSN-EDF-DI. The complete
set of experiments is available online [21].

VI. RELATED WORK

This work reuses two key implementation techniques and is
closely related to several prior studies, which we review next.

Implementation techniques. G-EDF-MP employs a DSP to
shield real-time tasks from OS overheads, a well-known tech-
nique that dates back to the Spring kernel [38]. More recently, the
idea of delegating cores to exclusively handle OS duties has also
been applied in the context of manycore platforms (e.g., [4, 39]).

G-EDF-MP further employs message passing, which is known
to scale well on multicores. In particular, in multikernel OSs
such as Barrelfish [9] and Quest-V [34], the entire OS design is
centered around message passing to avoid scalability bottlenecks
(among other reasons). Message passing is further used in
some current commercial RTOSs as well (e.g., ENEA’s OSE).
However, G-EDF-MP differs significantly from these prior works
in that it implements a global scheduling policy, wheres OSE,
Quest-V, and Barrelfish intentionally avoid global policies
whenever possible and implement partitioned schedulers (which
scale trivially w.r.t. overheads).

Message passing has also been shown to offer higher through-
put than shared locks in the face of heavy contention in

recent work studying synchronization choices on multicore plat-
forms [22, 35]. However, throughput depends mostly on average-
case overheads, whereas we designed G-EDF-MP specifically
to lower worst-case overheads. Prior to G-EDF-MP, it was not
clear that message passing could be a viable—or even superior—
choice for constructing global real-time schedulers.

Prior studies. Both GSN-EDF and SD have been the subject
of prior studies. Most recently, Lelli et al. [33] empirically
compared SD and stock Linux’s SCHED FIFO scheduler (in
various configurations to emulate global, clustered, and parti-
tioned scheduling) on a 48-core platform. In contrast to this
study, they did not measure worst-case overheads (and did not
apply schedulability analysis), but rather measured average-case
overheads and indirectly assessed each scheduler’s performance
with a statistical evaluation of observed task behavior. Since SD
exhibits low average-case overheads, their experimental setup
did not reveal the pathological lock contention that we observed.

Several alternative implementations of G-EDF in LITMUSRT

were compared in [16]. While several of the investigated
alternatives aimed at reducing lock contention, they did not
perform significantly better than the stock GSN-EDF plugin,
which in hindsight can be attributed to the fact that they did not
reduce peak contention (a single lock to serialize scheduling
decisions remained in all versions). Dedicated interrupt handling
was shown to be very beneficial, which is apparent in Fig. 8, too.

GSN-EDF was previously evaluated as part of several large-
scale, overhead-aware schedulability studies [7, 13, 18], as was
a prior version of G-EDF in LITMUSRT [20]. However, these
studies were conducted on platforms significantly smaller than
the 64-core machine employed herein, and also considered only
a single core count each; scalability limitations hence did not
manifest to the extent revealed in this paper. Further, prior studies
[7, 13, 18, 20] did not compare LITMUSRT against SD and used
statistical outlier filters (in contrast to this study).

Finally, it should be noted that scheduling overheads are just
one piece of the predictability puzzle on multicores, as other
factors such as contention and interference at all levels of the
memory hierarchy must be considered, too (e.g., see [30, 36]).

VII. CONCLUSION

We evaluated the scalability of G-EDF implementations and
found that G-EDF-MP, a novel scheduler design based primarily
on message passing, scales substantially better than prior lock-
based schedulers, thereby lowering scheduling overheads by
up to a factor of 36 on 64 cores. While global scheduling is
certainly not the right approach for all real-time workloads (e.g.,
CPMD issues remain), this work significantly extends the range
of workloads and platforms for which global approaches are
viable, thus opening up interesting avenues for future work. In
particular, the presented approach is not limited to G-EDF, but
can be easily applied to other global scheduling policies as well.

The key limitation of G-EDF-MP is that a single DSP is an
inherent bottleneck that inevitably will cause problems beyond
64 cores. Given this limitation, systems with core counts too
large to be efficiently supported by a single G-EDF-MP instance
should use clustered scheduling instead (whereby the set of all
cores is partitioned into disjoint subsets and a global scheduler

is instantiated for each such subset). In fact, this was already
noted in a prior study [7], which recommended that global
scheduling should be restricted to a “small-to-medium number of
cores.” Our work does not invalidate this observation, but rather
redefines the notion of what constitutes a “medium number of
cores.” That is, seen in this context, G-EDF-MP simply increases
the largest cluster size that can be efficiently supported.

In future work, it would be interesting to develop G-EDF-
MP extensions with two or more DSPs, which then, however,
would have to synchronize decisions. A substantial algorithmic
improvement would be to equip clients with a next pointer to
avoid idle time after job completions/suspensions, but choosing
next such that analytical benefits are realized is not trivial.

REFERENCES
[1] “The LITMUSRT project web site,” http://www.litmus-rt.org.
[2] T. Baker and S. Baruah, “An analysis of global EDF schedulability

for arbitrary-deadline sporadic task systems,” Real-Time Systems,
vol. 43, no. 1, pp. 3–24, 2009.

[3] T. Baker, M. Cirinei, and M. Bertogna, “EDZL scheduling analysis,”
Real-Time Systems, vol. 40, no. 3, pp. 264–289, 2008.

[4] F. Ballesteros, N. Evans, C. Forsyth, G. Guardiola, J. McKie, R. Min-
nich, and E. Soriano-Salvador, “Nix: a case for a manycore system
for cloud computing,” Bell Labs Tech. Journal, vol. 17, no. 2, pp. 41–
54, 2012.

[5] S. Baruah, “Techniques for multiprocessor global schedulability anal-
ysis,” in RTSS’07, 2007.

[6] S. Baruah, J. Gehrke, and C. Plaxton, “Fast scheduling of periodic
tasks on multiple resources,” in IPPS’95, 1995.

[7] A. Bastoni, B. Brandenburg, and J. Anderson, “An empirical com-
parison of global, partitioned, and clustered multiprocessor EDF
schedulers,” in RTSS’10, 2010, pp. 14–24.

[8] ——, “Cache-related preemption and migration delays: Empirical
approximation and impact on schedulability,” in OSPERT’10, 2010.

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new
OS architecture for scalable multicore systems,” in SOSP’09, 2009.

[10] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability
analysis of EDF on multiprocessor platforms,” in ECRTS’05, 2005.

[11] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A flexible
real-time locking protocol for multiprocessors,” in RTCSA’07, 2007.

[12] A. Block, “Adaptive multiprocessor real-time systems,” Ph.D. disser-
tation, The University of North Carolina at Chapel Hill, 2008.

[13] B. Brandenburg, “Scheduling and locking in multiprocessor real-
time operating systems,” Ph.D. dissertation, The University of North
Carolina at Chapel Hill, 2011.

[14] ——, “Improved analysis and evaluation of real-time semaphore
protocols for P-FP scheduling,” in RTAS’13, 2013, pp. 292–302.

[15] B. Brandenburg and J. Anderson, “Feather-trace: A light-weight
event tracing toolkit,” in OSPERT’07, 2007.

[16] ——, “On the implementation of global real-time schedulers,” in
RTSS’09, 2009.

[17] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leontyev, and
J. Anderson, “LITMUSRT: A status report,” in RTLWS’07, 2007.

[18] B. Brandenburg, J. Calandrino, and J. Anderson, “On the scalability
of real-time scheduling algorithms on multicore platforms: A case
study,” in RTSS’08, 2008.

[19] B. Brandenburg, H. Leontyev, and J. Anderson, “An overview of in-
terrupt accounting techniques for multiprocessor real-time systems,”
Journal of Systems Architecture: Embedded Software Design, vol. 57,
no. 6, pp. 638–654, 2011.

[20] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson,
“LITMUSRT: A testbed for empirically comparing real-time multi-
processor schedulers,” in RTSS’06, 2006.

[21] F. Cerqueira, M. Vanga, and B. Brandenburg, “Scaling global
scheduling with message passing (extended version),” 2014, avail-
able at: http://www.mpi-sws.org/∼bbb/papers.

[22] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always
wanted to know about synchronization but were afraid to ask,” in
SOSP’13, 2013.

http://www.litmus-rt.org
http://www.mpi-sws.org/~bbb/papers

[23] R. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp.
35:1–35:44, 2011.

[24] U. Devi and J. Anderson, “Tardiness bounds under global EDF
scheduling on a multiprocessor,” Real-Time Systems, vol. 38, no. 2,
pp. 133–189, 2008.

[25] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” WATERS’10, 2010.

[26] J. Erickson and J. Anderson, “Fair lateness scheduling: Reducing
maximum lateness in G-EDF-like scheduling,” in ECRTS’12, 2012.

[27] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An EDF
scheduling class for the Linux kernel,” in RTLWS’09, 2009.

[28] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling
of periodic task systems on multiprocessors,” Real-Time Systems,
vol. 25, no. 2-3, pp. 187–205, 2003.

[29] A. Gujarati, F. Cerqueira, and B. Brandenburg, “Schedulability anal-
ysis of the Linux push and pull scheduler with arbitrary processor
affinities,” in ECRTS’13, 2013.

[30] Y. Heechul, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Mem-
Guard: Memory bandwidth reservation system for efficient perfor-
mance isolation in multi-core platforms,” in RTAS’13, 2013.

[31] V. Legout, M. Jan, and L. Pautet, “A scheduling algorithm to reduce
the static energy consumption of multiprocessor real-time systems,”
in RTNS’13, 2013.

[32] J. Lelli, G. Lipari, D. Faggioli, and T. Cucinotta, “An efficient and
scalable implementation of global EDF in Linux,” in OSPERT’11,
2011.

[33] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari, “An experimental
comparison of different real-time schedulers on multicore systems,”
J. Syst. Softw., vol. 85, no. 10, pp. 2405–2416, 2012.

[34] Y. Li, M. Danish, and R. West, “Quest-V: A virtualized multikernel
for high-confidence systems,” 2011, arXiv:1112.5136.

[35] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Remote
core locking: Migrating critical-section execution to improve the
performance of multithreaded applications,” in ATC’12, 2012.

[36] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni, “Real-time cache management framework for multi-
core architectures,” in RTAS’13, 2013.

[37] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “RUN:
Optimal multiprocessor real-time scheduling via reduction to unipro-
cessor,” in RTSS’11, 2011.

[38] J. Stankovic and K. Ramamritham, “The Spring kernel: a new
paradigm for real-time operating systems,” SIGOPS Oper. Syst. Rev.,
vol. 23, no. 3, pp. 54–71, Jul. 1989.

[39] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the
case for a scalable operating system for multicores,” ACM SIGOPS
Operating Systems Review, vol. 43, no. 2, pp. 76–85, 2009.

APPENDIX

A. Overhead Experiments

Overheads under LITMUSRT are commonly measured using
workloads consisting of synthetic periodic tasks with ran-
domly generated task parameters (i.e., execution costs and
periods) [13, 16, 18]. These benchmark tasks carry out floating
point arithmetic on large arrays to simulate CPU-bound signal
processing tasks. We adopted this approach in this study as well,
but needed to port the tasks to SD to enable a fair comparison.

LITMUSRT provides custom system calls to support periodic
job releases and synchronous task set releases (which means
that all tasks release their first job at exactly the same time),
which we emulated under SD using standard Linux APIs.
Periodic execution can be trivially accomplished under Linux
with clock_nanosleep(). Synchronous task set releases
were coordinated with a shared memory segment and pthreads
barriers, as illustrated in Fig. 9. The benchmark workload hence
behaves virtually identically under SD and LITMUSRT.

1 b a r r i e r w a i t () ; / / a w a i t s y n c h r o n o u s r e l e a s e
2 n e x t r e l = s t a r t ; / / t h e s h a r e d r e l e a s e t ime
3 whi le (! t i m e o u t ()) {
4 c l o c k n a n o s l e e p (CLOCK MONOTONIC,

TIMER ABSTIME , &n e x t r e l , NULL) ;
5 / / Do some math and d i r t y t h e cache . . .
6 n e x t r e l = t i m e s p e c a d d (n e x t r e l ,

p e r i o d t i m e s p e c) ;
7 }

Fig. 9: Skeleton of the periodic tasks used to benchmark the SD
scheduler.

B. Overhead Accounting
Runtime overheads can be accounted for in schedulability

tests that assume overhead-free execution (i.e., that consider
overheads to be negligible) by inflating task parameters so that
a positive overhead-free schedulability test of the transformed
task set implies the timeliness of the original task set in the
presence of overheads (e.g., context switch costs can be charged
to the preempting job as execution costs, etc.). The required
transformations are conceptually simple, but somewhat tedious
and beyond the scope of this paper; the interested reader may
find a detailed description of the standard techniques applicable
to GSN-EDF, GSN-EDF-DI, and SD in [13, Ch. 3].

However, G-EDF-MP requires additional accounting for the
communication that it introduces. For the sake of completeness,
we briefly document how we extended the accounting meth-
ods provided in [13] to reflect the added delays. We assume
familiarity with the basic approach on behalf of the reader.

From an overhead accounting perspective, G-EDF-MP works
similarly to GSN-EDF-DI. Thus, the accounting methods for
scheduling (∆sch, ∆ipi) and interrupt overheads (∆rel, ∆ev)
do not differ. However, every time a preemption occurs, the
preempted lower-priority job is able to resume execution only
after a full round-trip communication with the DSP. That is, (i)
the client becomes idle, (ii) signals the completion, (iii) the DSP
links a new task to the client and sends back an IPI. This situation
is illustrated in Fig. 5, where the client processor becomes idle
while task T1 is pending.

Compared to the overheads delaying a preempted job under
GSN-EDF or GSN-EDF-DI, this introduces additional delays due
to the client request latency (∆req), the DSP handler (∆dsp),
an additional IPI delay (∆ipi), and an additional scheduler
invocation (∆sch) and context switch (∆cxs). This results in
the following rule for inflating parameters.

For a sporadic task Ti with period pi and execution cost ei,
let e′i and p′i denote the transformed parameters. Then

p′i = pi −∆ev

and

e′i =
ei + 3 · (∆sch + ∆cxs) + ∆cpd

1− U tck0

+ 2 · Cpre + ∆req + ∆dsp + 2 ·∆ipi + ∆rel,

where Cpre = ∆tck+∆ev·Utck

1−Utck denotes the interrupt-related cost
per preemption [13, Sec. 3.4.5], and where U tck = ∆tck

1000µs
denotes the utilization of the tick interrupt.

	Introduction
	Motivation: The Case for Global Scheduling
	Focus of This Paper

	Scalability Challenges
	Requirements and Challenges
	The Design and Scalability of G-EDFin LITMUSRT
	The SCHEDDEADLINEPatch for Linux
	Root Causes: Transitive Blocking and Push Failures
	Scalability Implications

	Global Scheduling via Message Passing
	Design Overview
	The G-EDF-MPData Structures
	The G-EDF-MPOperations

	Evaluation
	Measured Runtime Overheads
	Experimental Results

	Schedulability Experiments
	Experimental Setup
	Results

	Related Work
	Conclusion
	Appendix
	Overhead Experiments
	Overhead Accounting

