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Abstract—Contemporary multiprocessor real-time operating
systems, such as VxWorks, LynxOS, QNX, and real-time variants
of Linux, allow a process to have an arbitrary processor affinity,
that is, a process may be pinned to an arbitrary subset of
the processors in the system. Placing such a hard constraint
on process migrations can help to improve cache performance
of specific multi-threaded applications, achieve isolation among
components, and aid in load-balancing. However, to date, the
lack of schedulability analysis for such systems prevents the use
of arbitrary processor affinities in predictable hard real-time
applications. In this paper, it is shown that job-level fixed-priority
scheduling with arbitrary processor affinities is strictly more gen-
eral than global, clustered, and partitioned job-level fixed-priority
scheduling. The Linux push and pull scheduler is studied as a
reference implementation and techniques for the schedulability
analysis of hard real-time tasks with arbitrary processor affinity
masks are presented. The proposed tests work by reducing
the scheduling problem to “global-like” sub-problems to which
existing global schedulability tests can be applied. Schedulability
experiments show the proposed techniques to be effective.

I. INTRODUCTION

As multicore systems have become the standard computing
platform in many domains, the question of how to efficiently ex-
ploit the available hardware parallelism for real-time workloads
has gained importance. In particular, the problem of scheduling
multiprocessor real-time systems has received considerable
attention over the past decade and various scheduling algorithms
have been proposed.

One of the main dimensions along which these real-time
scheduling algorithms for multiprocessors are classified is
the permitted degree of migration. Global and partitioned
scheduling represent two extremes of this spectrum. Under
global scheduling, the scheduler dynamically dispatches ready
tasks to different processors from a single queue in the order of
their priorities, whereas under partitioned scheduling, each task
is statically assigned to a single processor, and each processor
is then scheduled independently. Researchers have also studied
hybrid approaches in detail. One notable hybrid approach is
clustered scheduling, under which processors are grouped into
disjoint clusters, each task is statically assigned to a single
cluster, and “global” scheduling is applied within each cluster.

Interestingly, many contemporary real-time operating sys-
tems, such as VxWorks, LynxOS, QNX, and other real-time
variants of Linux, do not actually implement the sched-
ulers as described in the literature. Instead, they use the
concept of processor affinity to implement a more flexible
migration strategy. For example, Linux provides the system
call sched_setaffinity(), which allows the processor

affinity of a process or a thread to be specified, with the
interpretation that the process (or the thread) may not execute
on any processor that is not part of its processor affinity. That
is, processor affinities allow binding1 a process to an arbitrary
subset of processors in the system.

Processor affinities are commonly used in throughput-
oriented computing to boost an application’s performance
(e.g., TCP throughput on multiprocessor servers [21]) and
to completely isolate real-time applications from non-real-time
applications by assigning them to different cores. Processor
affinities can also be used to realize global, partitioned, and
clustered scheduling. (E.g., to realize partitioned scheduling,
each task’s processor affinity is set to include exactly one pro-
cessor, and to realize global scheduling, each task’s processor
affinity is set to include all processors.) However, what makes
this feature interesting from a scheduling point of view is that
arbitrary processor affinities (APAs) can be assigned on a
task-by-task basis, which permits the specification of migration
strategies that are more flexible and less regular than those
studied in the literature to date.

In this paper, we present the first techniques for the
schedulability analysis of sporadic tasks with APAs under job-
level fixed-priority (JLFP) scheduling, both to enable the use of
APAs in predictable hard real-time systems (i.e., to allow APAs
to be used in systems in which the timing correctness must be
established a priori), and to explore whether scheduling with
APAs (APA scheduling hereafter) merits increased attention
from the real-time community.

In particular, we answer three fundamental questions pertain-
ing to APA scheduling. (i) Is APA scheduling strictly dominant
w.r.t. global, partitioned, and clustered scheduling? (Yes, for
JLFP policies, see Sec. III.) (ii) Is it possible to analyze APA
scheduling using existing techniques for global schedulability
analysis? (Yes, see Sec. IV.) (iii) Besides the desirable ability
to isolate tasks for scheduling-unrelated reasons such as
security concerns, does APA scheduling also offer improved
schedulability? (To some extent, yes, see Sec. V.)

To answer these questions, we study Linux’s push and pull
scheduler as a reference implementation of APA scheduling
and derive matching schedulability analysis.

A. Prior Work and Background

Recall that APA scheduling uses the concept of processor
affinities to implement a flexible migration strategy. Therefore,

1In the context of migrations, binding means that a process can only migrate
to (or be scheduled on) the processors that it is bound to.

Correction: this paper has been revised to account for flaws in Lemmas 2 and 4 in Sec. IV of the original ECRTS 2013
paper [24], which were stated in overly general terms and do not hold in all cases. All other sections, in particular Secs. III
and V, are unaffected and remain valid. A detailed erratum is provided in Appendix A.



we start by classifying real-time scheduling algorithms accord-
ing to different migration strategies and compare them with
APA scheduling. We then classify different priority assignment
policies used in real-time scheduling and discuss how they
relate to APA scheduling. Finally, we compare APA scheduling
to scheduling problems of a similar structure in related domains.

According to the degree of migrations allowed, real-time
scheduling algorithms either allow unrestricted migrations,
no migrations, or follow a hybrid approach with an inter-
mediate degree of migration. Global scheduling [15] is an
example of scheduling algorithm that allows unrestricted
migration of tasks across all processors (if required) while
partitioned scheduling [15] is an example of a scheduling
algorithm that allows no migration at all. Some notable hybrid
scheduling algorithms that have been proposed include the
aforementioned clustered scheduling [6, 14], semi-partitioned
scheduling (e.g., see [1, 5, 13, 25]) and restricted-migration
scheduling (e.g., see [1, 18]).

APA scheduling generalizes global, partitioned, and clustered
scheduling. In other words, APA scheduling constrains each
task to migrate only among a limited set of processors defined
by the task’s processor affinity. Therefore, using appropriate
processor affinity assignment, a task set can be modeled as a
global, clustered, or partitioned task set (see Sec. III).

Under semi-partitioned scheduling, most tasks are statically
assigned to one processor (as under partitioning) and only a few
tasks migrate (as under global scheduling). APA scheduling
resembles semi-partitioned scheduling in that it may also allow
two tasks to have separate degrees of migration. However, if
and when a task migrates under APA scheduling is determined
dynamically “on-demand” as under global scheduling, whereas
semi-partitioned schedulers typically restrict tasks to migrate
at pre-determined points in time to pre-determined processors.

APA scheduling, which restricts migrations to occur among
a fixed set of processors, should also not be confused with
restricted-migration scheduling. Under restricted-migration
scheduling, migrations occur only at job boundaries. It limits
when a job may migrate, whereas APA scheduling (like global,
clustered, and semi-partitioned scheduling) primarily specifies
where a job may migrate to. However, both global and semi-
partitioned scheduling [1, 18] can be combined with restricted-
migration scheduling and a similar approach could also be
taken for APA scheduling.

Orthogonal to the degree of migration allowed, scheduling
algorithms also have a choice of how to prioritize different jobs
or tasks in a task set and how these priorities may vary over
time. In particular, the different priority assignment policies
used in real-time scheduling can be classified either as task-
level fixed priority (FP), job-level fixed priority (JLFP), or
job-level dynamic priority (JLDP) policies.

A FP policy assigns a unique priority to each task, e.g., the
classic Rate Monotonic (RM) [29] and Deadline Monotonic
(DM) [4, 28] priority assignments fall into this category. A
JLFP policy assigns a fixed priority to each job, and unlike
under FP policies, two jobs of the same task may have distinct
priorities; e.g., this is the case in the Earliest Deadline First [29]

policy. A JLDP policy allows a job to have distinct priorities
during its lifetime; a prominent example in this category is
the Least Laxity First [17] policy. APA scheduling can be
combined with any of these priority assignment policies.

In this paper, we restrict our focus to JLFP policies, since
such policies can be implemented with low overheads [12].
However, our results pertaining to JLFP policies also apply
to FP scheduling, which is the policy actually implemented
in mainline Linux.2 Similar to priorities under a FP policy,
we assume that all jobs of a task share the same processor
affinity (i.e., the processor affinity assignment does not vary
over time).

APA scheduling could also be understood as global schedul-
ing on a (degenerate) unrelated heterogeneous multiprocessor
(e.g., see [22]), where each task has the same, constant
execution cost on any processor included in its processor
affinity, and “infinite” execution cost on any other processor.
However, such platforms have primarily been studied in the
context of partitioned scheduling to date (e.g., see [2, 8, 22]).

Finally, the APA scheduling problem also resembles a classic
non-real-time scheduling problem in which a set of non-
recurrent jobs is to be scheduled on a set of restricted identical
machines [23, 27], i.e., given a set of n jobs and a set of m
parallel machines, where each job has a processing time and a
set of machines to which it can be assigned, the goal is to find a
schedule that optimizes a given objective (e.g., a schedule with
a minimal makespan). However, to the best of our knowledge,
this problem has not been studied in the context of the classic
sporadic task model of recurrent real-time execution (or w.r.t.
other recurrent task models).

B. System Model

We consider the problem of scheduling a set of n real-time
tasks τ = {T1, . . . , Tn} on a set of m identical processors
π = {Π1,Π2, . . . ,Πm}. We adopt the classic sporadic task
model [30], where each task Ti = (ei, di, pi) is characterized
by a worst-case execution time ei, a relative deadline di, and a
minimum inter-arrival time or period pi. Based on the relation
between its relative deadline and its period, a task Ti either
has an implicit deadline (di = pi), a constrained deadline
(di ≤ pi), or an arbitrary deadline. The utilization ui of a task
Ti is ei/pi and the density δi of a task Ti is ei/min(di, pi).

Each task Ti also has an associated processor affinity αi,
where αi ⊆ π is the set of processors on which Ti can
be scheduled. In this initial work on the analysis of APA
scheduling, we assume that αi is static, i.e., processor affinities
do not change over time. We define the joint processor affinity
cpus(γ) of a task set γ as the set of processors on which at
least one task in γ can be scheduled. Similarly, for a set of
processors ρ, tasks(ρ) defines the set of tasks that can be
scheduled on at least one processor in ρ.

cpus(γ) =
⋃
∀Ti∈γ

αi, tasks(ρ) = {Ti | αi ∩ ρ 6= ∅} (1)

2Since first publication of the paper, an EDF implementation has been added
to mainline Linux as well [26].
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A task Tk can (directly) interfere with another task Ti,
i.e., delay Ti’s execution, only if αk overlaps with αi. We
let Ii denote the set of all such tasks in τ whose processor
affinities overlap with αi. In general, the exact interfering task
set depends on the scheduling policy. Therefore, we define IAi
as the interfering task set if Ti is scheduled under scheduling
algorithm A. For example, in an FP scheduler, only higher-
priority tasks can interfere with Ti. If we let prio(Tk) denote
Tk’s priority, where prio(Tk) > prio(Ti) implies that Tk has
a higher priority than Ti (i.e., Tk can preempt Ti), then

IFPi = {Tk | prio(Tk) > prio(Ti) ∧ αk ∩ αi 6= φ}. (2)

For simplicity, we assume integral time throughout the
paper. Therefore, any time instant t is assumed to be a
non-negative integral value representing the entire interval
[t, t+ 1). We assume that tasks do not share resources (besides
processors) and do not suspend themselves, i.e., a job is delayed
only if other tasks interfere with it. Further, a task Ti is
backlogged if a job of Ti is available for execution, but Ti
is not scheduled on any processor. We also use two concepts
frequently: schedulability of a task and schedulability of a task
set. A task Ti ∈ τ is schedulable on the processor platform π,
if it can be shown that no job of Ti ever misses its deadline.
A task set τ is schedulable on the processor platform π if all
tasks in τ are schedulable on π.

C. Paper Organization
The rest of this paper is structured as follows. In Sec. II we

give a brief overview of the Linux push and pull scheduler. We
also give a formal definition of an APA scheduler, assuming
the Linux scheduler as a reference implementation of APA
scheduling. In Sec. III, we compare APA scheduling with
global, partitioned, and clustered scheduling from a schedula-
bility perspective. In Secs. IV and V, we present schedulability
analysis techniques for APA scheduling and evaluate them
using schedulability experiments. Lastly, Sec. VI discusses
future work and concluding remarks.

II. PUSH AND PULL SCHEDULING IN LINUX

The Linux kernel employs an efficient scheduling framework
based on processor-local queues. This framework resembles
the design of a partitioned scheduler, i.e., every processor has
a runqueue containing backlogged tasks and every task in the
system belongs to one, and just one, runqueue. Implementing
partitioned scheduling is trivial in this design by enforcing
a no-migration policy (i.e., by assigning singleton processor
affinities). However, the Linux scheduler is also capable
of emulating global and APA scheduling using appropriate
processor affinities and migrations. We review the Linux
scheduler implementation of global and APA scheduling in
the remainder of this section to illustrate the similarities
between these two approaches, which we later exploit to derive
schedulability analysis techniques for APA scheduling.

A. Global Scheduling with Push and Pull Operations
Under global scheduling, all backlogged tasks are conceptu-

ally stored in a single priority-ordered queue that is served by

all processors, and the highest-priority tasks from this queue
are scheduled. A single runqueue guarantees that the system is
work-conserving and that it always schedules the m highest-
priority tasks (if that many are available). In preparation of our
analysis of APA scheduling, we summarize global scheduling
as follows.

Global Scheduling Invariant: Let S(t) be the set of all tasks
that are scheduled on any of the m processors at time t. Let
prio(Ti) denote the priority of a task Ti at time t. If Tb is a
backlogged task at time t, then under global scheduling:

∀Ts ∈ S(t), prio(Tb) ≤ prio(Ts) ∧ |S(t)| = m. (3)

However, the Linux scheduler implements runqueues in a
partitioned fashion. Therefore, to satisfy the global scheduling
invariant, Linux requires explicitly triggered migrations so that
a task is scheduled as soon as at least one of the processors
is not executing a higher-priority task. These migrations are
achieved by so-called “push” and “pull” operations, which are
source-initiated and target-initiated migrations, respectively, as
described next.

Let Πs denote the source and let Πt denote the target
processor, and let Tm be the task to be migrated. A push
operation is performed by Πs on Tm if Tm becomes available
for execution on Πs’s runqueue (e.g., when a new job of Tm
arrives, when a job of Tm resumes from suspension, or when
a job of Tm is preempted by a higher priority job). The push
operation iterates over runqueues of all processors and tries to
identify the best runqueue (belonging to the target processor
Πt) such that the task currently assigned to Πt has a lower
priority than Tm.

In contrast to a push operation, a pull operation is a target-
initiated migration carried out by processor Πt when it is
about to schedule a job of priority lower than the previously
scheduled task (e.g., when the previous job of a higher-priority
task suspended or completed). The pull operation scans each
processor Πs for a task Tm assigned to Πs’s runqueue such that
Tm is backlogged and Tm’s priority exceeds that of all local
tasks in Πt’s runqueue. When multiple candidate tasks such
as Tm are available for migration, the pull operation selects
the task with the highest priority.

Preemptions are enacted as follows in Linux. Suppose a
processor Πs is currently serving a low-priority task Tl when
a higher-priority task Th becomes availabe for execution on
Πs (i.e., processor Πs handles the interrupt that causes Th
to release a job). Then Πs immediately schedules Th instead
of Tl and invokes a push operation on Tl to determine if Tl
can be scheduled elsewhere. If no suitable migration target Πt

exists for Tl at the time of preemption, Tl will remain queued
on Πs until it is discovered later by a pull operation (or until
Th’s job completes and Πs becomes available again).

Crucially, a push operation is triggered only for tasks that
are not currently scheduled, and a pull operation similarly
never migrates a task that is already scheduled. Thus, once a
task is scheduled on a processor Πt, it can only be “dislodged”
by the arrival of a higher-priority task on Πt, either due to

3



a push operation targeting Πt or due to an interrupt handled
by Πt. On which processor a job is released depends on the
specific interrupt source (e.g., timers, I/O devices, etc.), and
how the interrupt routing is configured in the multiprocessor
platform (e.g., interrupts could be routed to a specific processor
or distributed among all processors). We make no assumptions
on which processor handles interrupts, that is, we assume that
a job may be released on potentially any processor.

B. APA Scheduling

APA scheduling is similar to global scheduling in that a
task may have to be migrated to be scheduled. Under global
scheduling, a task is allowed to migrate to any processor in
the system, whereas under APA scheduling, a task is allowed
to migrate only to processors included in its processor affinity
set. Therefore, APA scheduling provides a slightly different
guarantee than the global scheduling invariant.

APA Scheduling Invariant: Let Tb be a backlogged task at
time t with processor affinity αb. Let S′(t) be the set of tasks
that are scheduled on any processors in αb at time t. If prio(Ti)
denotes the priority of a task Ti at time t, then under APA
scheduling:

∀Ts ∈ S′(t), prio(Tb) ≤ prio(Ts) ∧ |S′(t)| = |αb|. (4)

A key feature of Linux’s scheduler is that push and pull
operations seamlessly generalize to APA scheduling. A push
operation on Πs migrates Tm from Πs to Πt only if Πt ∈ αm.
Similarly, a pull operation on Πt pulls Tm from Πs only if
Πt ∈ αm. In short, the two operations never violate a task’s
processor affinity when it is migrated.

The push and pull operations together ensure that a task Tm
is waiting to be scheduled only if all processors in αm are
busy executing higher-priority tasks. However, as discussed
above, note that push and pull operations never migrate already
scheduled, higher-priority tasks to “make room” for Tm. As a
result, Tm may remain backlogged if all processors in αm are
occupied by higher-priority tasks, even if some task Th ∈ S′(t)
could be scheduled on another processor Πx not part of αm
(i.e., in the worst case, if Πx ∈ αh and Πx /∈ αm, then Πx may
idle while Tm is backlogged). For instance, such a scenario may
occur if Th is released on the processor that Tm is scheduled
on since Linux switches immediately to higher-priority tasks
and only then attempts to push the preempted task. While this
approach may not be ideal from a schedulability point of view,
it has the advantage of simplifying the implementation; we
revisit this issue in Sec. VI.

From the definitions of the global and APA scheduling
invariants, we can infer that global scheduling is a special
case of APA scheduling, where all tasks have an affinity
αi = π. Conversely, APA scheduling is more general than
global scheduling, but also “global-like” from the point of view
of backlogged task—a task is only backlogged if “all available”
processors are serving higher-priority tasks. We discuss this idea
in detail in the next sections. We begin by showing APA JLFP
scheduling to strictly dominate global, clustered, and partitioned

JLFP scheduling in Sec. III below, and then present in Sec. IV
general schedulability tests applicable to all schedulers that
guarantee the APA scheduling invariant given in Equation 4.

III. GENERALITY OF APA SCHEDULING

Recall from Sec. I that a careful assignment of processor
affinities can improve throughput, can simplify load balancing
(e.g., to satisfy thermal constraints), and can be used to isolate
applications from each other (e.g., for security reasons). In this
section, we weigh the schedulability benefits of APA scheduling
against global and partitioned scheduling and show that APAs
are a useful construct from the point of view of real-time
scheduling as well.

As discussed in Sec. I, APA scheduling is a constrained-
migration model that limits the scheduling and migration of
a task to an arbitrary set of processors. By assigning an
appropriate processor affinity, a task can either be allowed
to migrate among all processors (like global scheduling),
allowed to migrate among a subset of processors (like clustered
scheduling), or not allowed to migrate at all (like partitioned
scheduling).

Lemma 1: A task set that is schedulable under global,
partitioned, or clustered scheduling, is also schedulable under
APA scheduling.

Proof-sketch: Trivial; APA scheduling can emulate global,
clustered, and partitioned scheduling by assigning every task
in the task set an appropriate processor affinity.

However, unlike under clustered scheduling, the processor
affinities of tasks under APA scheduling need not be disjoint,
i.e., two tasks Ti and Tk can have non-equal processor affinities
αi and αk such that αi ∩ αk 6= ∅. As a result, there exist task
sets that are schedulable under APA scheduling, but infeasible
under global, clustered, and partitioned scheduling.

Theorem 1: APA JLFP scheduling strictly dominates global,
partitioned, and clustered JLFP scheduling.

Proof: We show that there exists a task set which is
schedulable under APA scheduling, but not schedulable under
global, partitioned, or clustered JLFP scheduling. Consider the
task set described in Table I, which is to be scheduled on two
processors. Consider any JLFP rule to prioritize tasks and an
asynchronous arrival sequence, where task T2 arrives at time
1 but all other tasks arrive at time 0. We try to schedule this
task set using global, partitioned, and APA JLFP scheduling.
We do not explicitly consider clustered scheduling because, for
two processors, clustered scheduling reduces to either global
or partitioned scheduling.

Global scheduling: Since tasks T1 and T2 have unit densities
each and there are two processors in the system, to obtain a
schedule without any deadline misses, jobs of these tasks must
always have the two highest priorities (although their relative
priority ordering may differ under different JLFP policies).
Also, since the deadlines of tasks T3 and T4 are very small
compared to the execution costs of tasks T5, T6, and T7, jobs
of tasks T3 and T4 must be assigned higher priorities relative
to the jobs of tasks T5, T6, and T7. Due to these constraints,
either jobs of T3 must be assigned the third-highest priority and
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TABLE I

Task ei di pi
T1 1 1 10, 000
T2 2 2 10, 000
T3 3 4 10, 000
T4 2 4 10, 000
T5 501 1, 000 1, 000
T6 5, 001 10, 000 10, 000
T7 5, 000 10, 000 10, 000

TABLE II

Task αi
T1 {Π1}
T2 {Π2}
T3 {Π1}
T4 {Π2}
T5 {Π1}
T6 {Π2}
T7 {Π1,Π2}

jobs of T4 the fourth-highest priority, or vice versa. In either
case, either T3 or T4 (whichever has the job with the lower
priority) misses its deadline because neither can exploit the
parallelism during [3, 4), as illustrated in Figure 1. Therefore,
the task set is infeasible under global JLFP scheduling with
any JLFP rule.

Partitioned scheduling: A feasible partition must have a
total utilization of at most one. The utilizations of tasks T5,
T6, and T7 are 0.501, 0.5001, and 0.5 respectively. Clearly,
these three tasks cannot be partitioned into two bins, each with
total utilization at most one. Therefore, the task set cannot be
partitioned onto a two-processor system.

APA scheduling: The failure of global scheduling suggests
that tasks T3 and T4 (and also tasks T1 and T2 because of
their unit densities) should be restricted to separate processors.
This separation cannot be achieved by partitioning as tasks
T5, T6, and T7 prevent successful partitioning of the task set.
Therefore, using processor affinities as given in Table II, we
partition tasks T1, T2, T3, T4, T5, and T6 but allow task T7

to migrate. The task set is now schedulable assuming FP as
the JLFP rule (lower indices imply higher priorites). To show
this, we next prove the schedulability of task T7 (tasks T1, T2,
T3, T4, T5, and T6 can be trivially shown to be schedulable
using uniprocessor response-time analysis). Consider an interval
Γ = [ta, td) of length 10,000 where ta is the arrival time and
td is the absolute deadline of a job J7 belonging to task T7.
We look at the two processors Π2 and Π1 in sequence. First,
we bound the minimum time for which J7 can execute on
Π2. Then, to ensure T7’s schedulability, we argue that J7 can
always satisfy its remaining processor demand on Π1.

We use techniques from [7] to bound the maximum inter-
ference such that any demand due to a carry-in job (i.e., a
job released prior to ta) is also accounted for. During Γ, the
maximum interference incurred by J7 on Π2 due to tasks T2,
T4, and T6 is bounded by 2 + 2 + 5001 = 5005 (the exact
interference I varies with the inter-arrival times of jobs). If
I ≤ 5000, then J7 can be scheduled successfully on Π2 itself.
However, if I > 5000, J7 must satisfy its remaining demand
on Π1, i.e., if I = 5000 + δ where δ ∈ [1, 5], then J7 must
execute on processor Π1 for at least δ time units.

Let Γ′ denote the cumulative interval(s) in Γ when jobs of
T6 interfere with J7 on Π2. Since the contribution of tasks
T2 and T4 to I is at most 2 + 2 = 4, the contribution of T6

to I is at least 4996 + δ (recall that I = 5000 + δ). This
contribution is a result of either one job or two consecutive
jobs of T6 (in case the release of the first job of T6 does not
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2 31
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(a) T4’s deadline miss
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T3

T4
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(b) T3’s deadline miss

Fig. 1. Global JLFP schedules of tasks T1, T2, T3, and T4 in Table I.
The small up-arrows and down-arrows indicate job-arrivals and deadlines
respectively. Jobs executing on processor Π1 are in shaded in grey and jobs
executing on processor Π2 are shaded in white. (a) T3’s job is assigned a
higher priority than T4’s job and consequently T4’s job misses its deadline.
(b) T4’s job is assigned a higher priority than T3’s job and consequently T3’s
job misses its deadline.

align with ta but precedes ta). In either case, Γ′ consists of
at least one contiguous interval Γ′′ ∈ Γ′ of length 2498 + δ/2.
However, in any contiguous interval of length 2498 + δ/2,
Π1 can be busy executing jobs of tasks T1, T3, and T5 for at
most d(2498 + δ/2)/1000e ∗ 501 + 2 + 2 = 1507 time units,
i.e., while Π2 is continuously unavailable during Γ′′, Π1 is
available for at least 2498 + δ − 1507 = 991 + δ � δ time
units, and consequently J7 has enough opportunities to finish
its remaining execution on Π1. Therefore, T7 is schedulable
and the task set is schedulable under APA JLFP scheduling.

Theorem 1 establishes the dominance of APA scheduling
with a JLFP policy over global, partitioned, and clustered JLFP
scheduling and provides further motivation to explore this
scheduling technique. Concerning the more general case of
JLDP policies, we leave the dominance question for future
work. However, we note that there may be a case of equivalence
since there exist global JLDP schedulers that are optimal for
implicit-deadline tasks [9], and since optimal online scheduling
of arbitrary-deadline tasks is generally impossible [20]. In
any case, Lemma 1 shows that APA scheduling is at least
as powerful as global, clustered, and partitioned scheduling
combined even w.r.t. JLDP policies.

In the next section, we provide initial schedulability analysis
techniques for APA schedulers with any JLFP policy.

IV. SCHEDULABILITY ANALYSIS3

There are many variants of APA schedulers deployed in
current real-time operating systems such as VxWorks, LynxOS,
QNX, and real-time variants of Linux. However, to the best
of our knowledge, no schedulability analysis test applicable to
task sets with APAs has been proposed to date. In this section,
we apply the ideas from Sec. II that relate APA scheduling
to the well-studied global scheduling problem, and propose
simple and efficient techniques to analyze task sets for APA

3Correction: Lemmas 2 and 4 are stated in too general terms and do not
hold in all cases. Refer to Appendix A for details.
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scheduling. In a nutshell, we reduce APA scheduling to “global-
like” subproblems, which allows reuse of the large body of
literature on global schedulability analysis.4 The section is
divided into three parts. We start with a simple method for
analyzing task sets with APAs using tests for global scheduling
and argue its correctness. The second part introduces a more
robust test with reduced pessimism, but at the cost of high
computational complexity. The last part introduces a heuristic-
based test to balance the cost versus pessimism tradeoff by
considering only “promising” subproblems.

A. Reduction to Subproblems

Recall from Sections II and III that, for a given task Ti, global
scheduling is a special case of APA scheduling when αi = π.
Similarly, for a subproblem with a reduced processor set αi,
and a reduced task set tasks(αi), APA scheduling reduces
to global scheduling.5 For example, consider the scheduling
problems illustrated in Figure 2. Figure 2(a) represents an
APA scheduling problem, where each task has an individual
processor affinity. Figure 2(b) represents a subproblem of
the former problem that is also an APA scheduling problem.
However, as in a global scheduling problem, task T5’s processor
affinity spans all the processors in this subproblem. Also, all
the tasks in this subproblem can interfere with T5. Therefore,
the subproblem is global w.r.t. T5. In other words, if T5 is
schedulable using global scheduling on a platform consisting
only of the processors in α5, then it is also schedulable using
APA scheduling on the processor platform π.6 This idea is
formally stated in the lemma below for JLFP schedulers
and thus also extends to FP scheduling. Recall that tasks(ρ)
denotes the set of tasks that can be scheduled on at least one
processor in ρ.

Lemma 2: If a task Ti ∈ tasks(αi) is schedulable when
the reduced task set tasks(αi) is globally scheduled on the
reduced processor platform αi using a JLFP policy A, then Ti is
also schedulable under APA scheduling of τ on the processor
platform π using the same JLFP policy A.7

Proof sketch: Suppose not. Then a task Ti ∈ tasks(αi) is
schedulable under global scheduling on the processor platform
αi using a JLFP policy A, but it is not schedulable under APA
scheduling on the processor platform π using the same JLFP
policy A. For a job Ji of any task Ti to miss its deadline, its
response time ri must be greater than its deadline, i.e., ri > di,
where ri is the sum of Ti’s WCET and the time during which
Ji was interfered with by other tasks.

Task Ti incurs interference whenever all processors on
which Ti can be scheduled (i.e., αi) are busy executing

4Correction: the proposed approach allows reuse of certain techniques, but
not of the entire body of literature on global schedulability analysis.

5Correction: APA scheduling resembles global scheduling in some regards,
but it does not formally reduce to global scheduling.

6Correction: as demonstrated in Appendix A.1, this is not generally true, as
the interference due to higher-priority jobs under APA and global scheduling
may differ even if the analyzed job’s affinity set includes all processors.

7Correction: while certain sufficient (but not necessary) global schedula-
bility tests can indeed be applied to global-like subproblems to assess the
schedulability of a task under APA scheduling (e.g., see Appendix B), the
claim does not hold in general; see Appendix A.1 for a counterexample.

tasks other than Ti. With respect to a given interval
[t1, t2), let Θi(t1, t2) denote the sub-interval (or a union
of non-contiguous sub-intervals) during which all processors
in αi are busy executing tasks other than Ti. Therefore,
if |Θi(t1, t2)| represents the cumulative length of the
sub-intervals denoted by Θi(t1, t2), then for a job Ji
arriving at ta to miss its deadline, it is necessary that
ei + |Θi(ta, ta + di)| > di.

Since Ti is not schedulable under APA scheduling on the
processor platform π, there exists an arrival sequence and a
corresponding interval [ta, td) of length di such that a job
JAPAi of Ti arrives at time ta and misses its deadline at time
td under APA scheduling, i.e.,

((((((((((((((hhhhhhhhhhhhhh
∃ta : ei + |ΘAPA

i (ta, td)| > di. (5)

However, since Ti ∈ τ is schedulable under global scheduling
on the reduced processor platform αi, for any possible arrival
sequence and a corresponding interval [ta, td) of length di, a
job JGi of Ti arriving at ta successfully completes its execution
before td, i.e.,

((((((((((((hhhhhhhhhhhh
∀ta : ei + |ΘG

i (ta, td)| ≤ di. (6)

The work that comprises ΘAPA
i (ta, td) is computed upon αi.

ΘG
i (ta, td) is computed upon all processors in the processor

platform, which is equal to αi in this case. Also, by
construction, under both APA and global scheduling, the same
set of tasks keeps processors in αi busy during ΘAPA

i (ta, td)
and ΘG

i (ta, td), i.e., the set of possible arrival sequences are
equivalent. Therefore, if there exists an interval [ta, td) such
that ΘAPA

i (ta, td) exceeds di − ei, then there exists such an
interval for ΘG

i (ta, td) as well, and Equations 5 and 6 cannot
both be true simultaneously.

Using the equivalence from Lemma 2, we design a simple
schedulability test for APA scheduling based on global schedu-
lability analysis. In this paper, our focus is on global tests in
general, that is, we do not focus on any particular test.8 For
this purpose, we assume the availability of a generic9 test
GlobalAnalysis(A, Ti, π, ζi) to analyze the schedulability of
a single task, where A is the scheduling policy, Ti is the task
to be analyzed, π is the processor set on which the task is to be
scheduled, and ζi is the set of tasks that can interfere with Ti.
The test returns true if Ti is schedulable and false otherwise.
Note that a result of true does not imply that all tasks in τ are
schedulable; we are only concerned with schedulability of task
Ti. Using this interface we define a simple method to analyze
tasks sets for APA scheduling. The key idea is to identify
for each task an “equivalent” global subproblem, and to then
invoke GlobalAnalysis(A, Ti, π, ζi) on that subproblem.

Lemma 3: A task set τ is schedulable on a processor set

8Correction: since Lemma 2 is incorrect, the approach described in this
section is not applicable to all global schedulability tests.

9Correction: assume a specific test, namely one of the tests proven to be
compatible in Appendix B.
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Fig. 2. Four scheduling problems (a), (b), (c), and (d) are illustrated here. The
circles represent the processors and the rectangles represent the tasks and their
associated processor affinities, e.g., problem (a) consists of the processor set
π = {Π1,Π2,Π3,Π4,Π5} and the task set τ = {T1, T2, T3, T4, T5, T6}.
Problem (b), (c), and (d) are subproblems of problem (a). Note that all the
subproblems are global w.r.t. task T5, i.e., like in a global scheduling problem,
T5 can be scheduled on all processors in these subproblems and all tasks in
these subproblems can potentially interfere with T5.

π under APA scheduling using a JLFP policy A if∧
∀Ti∈τ

GlobalAnalysis(A, Ti, αi, I
A
i ). (7)

Proof sketch: The analysis checks schedulability of each
task Ti ∈ τ under global scheduling on processor platform
αi. From Lemma 2, if each task Ti ∈ τ is schedulable on
the corresponding reduced processor platform αi, then Ti
is also schedulable on the processor platform π under APA
scheduling.10 Therefore, the entire task set τ is schedulable
under APA scheduling with policy A on the processor platform
π.

The analysis technique in Lemma 3 is a straightforward way
to reuse global schedulability analysis for analyzing task sets
with APAs, i.e., task sets to be scheduled by APA scheduling.
Apart from the computations required by a conventional global
schedulability test, this new analysis technique requires only
minor additions for computing the interfering task set (e.g. IFPi
for an FP rule, IEDFi for an EDF rule) for every task Ti on
the respective processor platform αi. However, this algorithm
assumes that the processors in overlapping affinity regions
must service the demand of all tasks that can be scheduled
in that overlapping region. Therefore, it is possible that a
schedulability test claims task Ti to be not schedulable with
the given processor affinity αi, but claims it to be schedulable
with a different processor affinity α′i ⊂ αi, i.e., the result of
the schedulability analysis in Lemma 3 may vary for the same
task if reduced to different subproblems.

Example 1: Consider the task set described in Table III,
which is to be scheduled on five processors under APA
scheduling. The processor affinities of the tasks are also
illustrated in Figure 2(a). Assume a fixed-priority scheduler
with the following priority scheme: ∀i < k, prio(Ti) >
prio(Tk). To analyze the schedulability of the task set, we
define GlobalAnalysis(FP , Ti, αi, I

FP
i ) in Lemma 3 as a

modified version of the response-time analysis for global
fixed-priority scheduling in [10] (see Sec. V for details). Task
T5 fails the GlobalAnalysis(FP , T5, α5, I

FP
5 ) test with the

given processor affinity (see Figure 2(b) for the corresponding

10Correction: this property must be established for each global schedulabil-
ity test that is to be used with the proposed reduction approach; see Appendix B.

TABLE III

Task ei di pi αi
T1 5 6 6 {Π2,Π3}
T2 3 4 4 {Π4,Π5}
T3 1 4 4 {Π2,Π5}
T4 2 8 8 {Π3,Π4}
T5 2 5 12 {Π1,Π2,Π4}
T6 1 3 12 {Π1,Π3,Π5}

subproblem), i.e, α5 = {Π1,Π2,Π4}. However, if applied to
a different subset of the processor affinity (Figure 2(c)), i.e.,
α′5 = {Π1,Π4}, T5 is deemed schedulable by the test. Note
that on the processor platform α5, all four higher priority tasks
can interfere with T5; but on the processor platform α′5, only T2

and T4 can interfere with T5. Therefore, there is a significant
reduction in the total interference on T5, and consequently the
test claims T5 to be schedulable on α′5, but not on α5.

In the next section, we use Example 1 to motivate an analysis
technique for APA scheduling that checks schedulability of a
task Ti on all possible subsets of αi. We also argue the formal
correctness of this approach by proving that schedulability of
Ti on a processor platform α′i ⊂ αi implies schedulability of
Ti on the processor platform αi.

B. Exhaustive Reduction

Lemma 4: If a task Ti ∈ τ is schedulable under APA
scheduling with the processor affinity α′i ⊂ αi and task set
τ , then Ti is also schedulable under APA scheduling with the
affinity αi and task set τ .11

Proof sketch: We prove the lemma by contradiction,
analogous to Lemma 2. Recall from the proof of Lemma 2
that Θi(t1, t2) denotes the sub-interval of interference during
which all processors in αi are busy executing tasks other than
Ti. Similarly, we define Θ′i(t1, t2) over all processors in α′i.
We assume that Ti is not schedulable under APA scheduling
with processor affinity αi and task set τ but Ti is schedulable
under APA scheduling with the processor affinity α′i ⊂ αi, i.e.,
if ta is the arrival time of a job of Ti for an arbitrary job arrival
sequence, then

((((((((((((((hhhhhhhhhhhhhh
∃ta : ei + |Θi(ta, ta + di)| > di, (8)

((((((((((((((hhhhhhhhhhhhhh
∀ta : ei + |Θ′i(ta, ta + di)| ≤ di. (9)

For any arbitrary, fixed arrival sequence, at any time
instance, if all processors in αi are busy executing
tasks other than Ti, then all processors in α′i must also
be executing tasks other than Ti since α′i ⊆ αi. Thus,
Θ′i(ta, ta + di) is a superset (⊇) of Θi(ta, ta + di), and hence,
|Θ′i(ta, ta + di)| ≥ |Θi(ta, ta + di)|: Equations 8 and 9
cannot be true simultaneously.

In Example 1, the schedulability test could not claim task
T5 to be schedulable with a processor affinity of α5. However,
the test claimed that the same task T5, assuming a reduced

11Correction: while the claim holds under FP scheduling, it does not hold
for all JLFP policies; see Appendix A.2 for a counterexample using EDF.
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processor affinity of α′5 ⊂ α5, is schedulable. Note that
this example does not contradict Lemma 4. While the result
of Lemma 4 pertains to actual schedulability under APA
scheduling, the schedulability test used in Example 1 is a
sufficient, but not necessary, test, which is subject to inherent
pessimism, both due to the subproblem reduction and because
the underlying global schedulability test is only sufficient, but
not necessary, as well. Therefore, it may return negative results
for tasks that are actually schedulable under APA scheduling.

We next present a schedulability analysis for APA scheduling
based on Lemma 4 and the simple test in Lemma 3 that exploits
the oberservation that it can be beneficial to consider only a
subset of a task’s processor affinity. In this method, global
schedulability analysis is performed for a task Ti ∈ τ on all
possible subsets of its processor affinity, i.e., ∀S ⊆ αi. The task
Ti is deemed schedulable if it passes the analysis for at least
one such subset S, and the task set τ is deemed schedulable
if all tasks Ti ∈ τ pass the test. Recall from Lemma 4
that schedulability of a task Ti under APA scheduling with
processor affinity S ⊆ αi implies schedulability of Ti under
APA scheduling with processor affinity αi, however, it does
not require modifying the processor affinity of Ti from αi to
S. In particular, while analyzing schedulability of any task Ti,
the processor affinities of other tasks remain unchanged.

Lemma 5: A task set τ is schedulable on a processor set
π under APA scheduling using a JLFP policy A if∧
∀Ti∈τ

( ∨
∀Si⊆αi

GlobalAnalysis(A, Ti, Si, I
A
i ∩ tasks(Si))

)
.

(10)
Proof sketch: If there exists a subset Si ⊆ αi such that Ti

is schedulable using global scheduling on processor platform
Si using a JLFP policy A, then from Lemma 2, Ti is also
schedulable under APA scheduling with the processor affinity
Si and the policy A. From Lemma 4, since Ti is schedulable
under APA scheduling with the processor affinity Si ⊆ αi, Ti
is also schedulable under APA scheduling with the processor
affinity αi.12 Therefore, if corresponding subsets exist for every
task in τ , the task set τ is schedulable on the processor set π
under APA scheduling using JLFP policy A.

The schedulability test given by the above lemma requires
iterating over potentially every subset S ⊆ αi. This makes the
algorithm robust in the sense that it eliminates all false negatives
that occur when a task Ti can be claimed to be schedulable
only on a subset of its processor affinity S ⊂ αi, but not on its
processor affinity αi. However, since |αi| is bounded by m, and
since the schedulability tests have to be run for all the tasks in
the task set, in the worst case, the algorithm requires O(n · 2m)
invocations of GlobalAnalysis(A, Ti, αi, I

A
i ). Despite the

exponential complexity, an exhaustive approach is still feasible
for contemporary embedded multiprocessors with up to eight
processors. However, for multiprocessor systems with higher
number of processors, we need an alternative algorithm that
does not analyze a task for all possible subsets of its processor

12Correction: this property must be established for each global schedulabil-
ity test that is to be used with the proposed reduction approach; see Appendix B.

affinity. Instead, in the next section, we propose a heuristic to
identify and test only a few “promising” subsets.

C. Heuristic-based Reduction

We propose a heuristic that helps to choose promising subsets
of a task’s processor affinity to test the task’s schedulability.
The heuristic removes one or a few processors at a time from
the task’s processor affinity such that maximum benefit is
achieved in terms of the interference lost (i.e., the processor
time gained). We illustrate this intuition with an example below
and then proceed with a detailed explanation of the heuristic
and the new analysis technique.

Example 2: Consider the task set from Example 1 (Ta-
ble III). Since the schedulability of tasks T1, T2, . . . , T5

has already been established in Example 1, we carry
out analysis for task T6 in this example. T6 fails
GlobalAnalysis(FP, T6, α6, I

FP
6 ) with the processor affinity

as given in Figure 2(b), i.e, α6 = {Π1,Π3,Π5}. Therefore, we
find an appropriate subset α′6 ⊂ α6 such that T6 is claimed
to be schedulable on processor platform α′6. However, unlike
the algorithm given in Lemma 5, we intelligently select only
the promising subsets of α6. In each iteration, we remove the
processor that contributes the most to the total interference
w.r.t. T6.

Iteration 1: α6 = {T1, T3, T5}. The removal candidates in
α6 are Π1, Π3 and Π5. Removing Π1 leads to removal of {T5},
removing Π3 leads to removal of {T1, T4} and removing Π5

leads to removal of {T2, T3} from IFP6 . We remove {Π3}
because {T1, T4} contributes most to the total interference on
T6. But T6 still fails the schedulability test.

Iteration 2: α′6 = {Π1,Π5}. The removal candidates in α′6
are Π1 and Π5. Removing Π1 leads to removal of {T5} and
removing Π5 leads to removal of {T2, T3} from IFP

′

6 . We
choose to remove {Π5} because {T2, T3} contributes more to
the total interference on T6 than {T5}. The new subset is thus
α′′6 = {Π5} and T6 passes the schedulability test. Therefore,
T6 is schedulable under APA scheduling with an FP policy.

The intuition of iteratively removing processors
from the processor affinity until the processor set is
empty is formalized with the heuristic-based algorithm
HeuristicBasedAnalysis(Ti, αi, Ii), which is defined
in Algorithm 1. With this procedure, we obtain a new
schedulability analysis for APA scheduling: a task set τ is
schedulable under APA scheduling using JLFP if ∀Ti ∈ τ ,
HeuristicBasedAnalysis(Ti, αi, Ii) returns true.

Algorithm 1 shows the pseudo-code for heuristically deter-
mining subsets of αi and then invoking global analysis on
those subsets. αki is the new subset to be analyzed in the
beginning of the kth iteration and Iki is the corresponding
interfering task set. RC denotes the set of removal candidates.
A removal candidate is a set of processors c such that, if c is
removed from αki to obtain the new subset αk+1

i , then there is
a non-zero decrease in the total interference on Ti from tasks
in Ik+1

i (compared to the total interference on Ti from the
tasks in Iki ). In other words, removing c from αki should lead
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Algorithm 1 HeuristicBasedAnalysis(A, Ti, αi, IAi )

1: α0
i ← αi

2: I0
i ← IAi

3: k ← 0
4: repeat
5: if GlobalAnalysis(A, Ti, α

k
i , I

k
i ) is true then

6: return true
7: end if
8: RC ← φ
9: for all Tx ∈ Iki do

10: RC ← RC ∪ {αk
i ∩ αx}

11: end for
12: for all c ∈ RC do
13: t(c)← tasks(αk

i ) \ tasks(αk
i \ c)}

14: ∆(c)←
∑

Tx∈t(c)(
⌈

di
px

⌉
+ 1)ex

15: end for
16: c′ ← c ∈ RC with largest ∆(c)

|c| (tie break using |c|)
17: αk+1

i ← αk
i \ c′

18: Ik+1
i ← Iki \ t(c′)

19: until (αk+1
i = αk

i ) ∨ (αk+1
i = φ)

to removal of at least one task from Iki . Let t(c) be the set
of tasks removed from Iki if c is removed from αki . To select
the “best” removal candidate, we use a metric that we call
estimated demand reduction per processor, as defined below
(∆(c) is computed in line 14 of Algorithm 1).

∆(c)

|c|
=

1

|c|
∑

Tx∈t(c)

(⌈
di
px

⌉
+ 1

)
ex (11)

For a removal candidate c, the estimated demand reduction
per processor quantifies the approximate reduction in total
interference after the kth iteration, if c was removed from αki
to obtain the new subset. The algorithm selects the removal
candidate with the maximum estimated demand reduction per
processor. In case of a tie between two or more candidates,
we select the candidate with a smaller cardinality, e.g. among
two candidates c′, c′′ ∈ RC with equal demand reduction
per processor, we select c′ if |c′| < |c′′|. This ensures that
more processors are available for scheduling Ti with the same
amount of approximate total interference. We run this procedure
iteratively either until we find a successful subset or until there
is no change in αk+1

i w.r.t. αki .

The procedure HeuristicBasedAnalysis(Ti, αi, Ii) re-
quires at most a number of iterations linear in the number of
processors m because in every iteration at least one processor
is removed from Ti’s processor affinity. Therefore, after at
most |αi| iterations, the processor set becomes empty and
the procedure terminates. The schedulability of a task set τ
requires each task Ti ∈ τ to be schedulable. Therefore, in
the worst case, this algorithm requires O(n ·m) invocations
of GlobalAnalysis(A, Ti, αi, Ii). Compared to the exhaustive
technique discussed in the previous section, this algorithm is
much quicker to converge to a suitable subset. However, it is a
heuristic-based algorithm and may still miss out on prospective
subsets that may yield positive results. In the next section, we
present results of schedulability experiments to validate the
efficiency of the proposed analysis.

V. EXPERIMENTS AND EVALUATION

We ran two sets of schedulability experiments, to compare
global, partitioned, and APA FP scheduling, and to compare
the performance of the proposed heuristic-based schedulability
analysis for APA scheduling with the exhaustive analysis. We
start with the discussion of the experimental setup and then
report on the observed trends.

To perform the experiments, we generated task sets using
Emberson et al.’s task set generator [19]. Motivated by our
study of Linux, we restricted our focus to FP scheduling
algorithms. For global FP scheduling, we used the DkC priority
assignment heuristic [16] and the response-time analysis for
global fixed-priority scheduling given in [10], which we denote
as G-FP-RTA. For partitioned FP scheduling (P-FP), we used
uniprocessor response-time time analysis [3] and assigned
DM priorities. Partitioning was carried out using five standard
bin-packing heuristics: worst-fit-decreasing, first-fit-decreasing,
best-fit decreasing, next-fit-decreasing, and almost-worst-fit-
decreasing; a task set was claimed schedulable under P-FP if
it could be succesfully partitioned using any of the heuristics
and if each task in each partition passed the response-time test.

To implement GlobalAnalysis(FP, Ti, αi, IFPi ) for APA
scheduling, we used a modified version of G-FP-RTA, which
we refer to as G-FP-APA. Note that the task sets used in APA
scheduling experiments were assigned processor affinities using
a heuristic similar to the one discussed in Sec. IV, i.e., we
started with a global assignment and allowed shrinking of the
processor affinities till a schedulable partitioned assignment was
found, or till a schedulable arbitrary assignment (intermediate
of global and partitioned assignments) was achieved. Since
optimal priority assignment for APA scheduling is still an open
problem, we tried using both DkC and DM priorities with the
aforementioned heuristic. Also, tasks with a singleton processor
affinity set were analyzed using uniprocessor response time
analysis for efficiency (instead of G-FP-RTA).

We considered two variants of G-FP-APA, the exhaustive
approach based on Lemma 5 (G-FP-APAe) and the heuristic-
based approach based on Algorithm 1 (G-FP-APAh). For the
first set of experiments, we varied the number of processors
m from 3 to 8. Herein, we focus on graphs corresponding to
m = 4, m = 6, and m = 8. For the second set of experiments,
m ranges from 3 to 5. We also varied the utilization from 0 to
m in steps of 0.25 (excluding both end points). For each value
of m and utilization u, we generated and tested 640 task sets,
with a number of tasks ranging from m+ 1 to 2.5m, in steps
of 4. The periods of tasks were randomly chosen from [10ms,
100ms] following a log-uniform distribution. We summarize
the main trends apparent in our results below.

Experiment 1 (G-FP-APAe vs. G-FP-RTA vs. P-FP): Each
graph in Figure 3 consists of three curves, one for each of the
three configurations, which represent the fraction of task sets
schedulable as a function of the total system utilization. For
utilization greater than 75%, G-FP-APAe performs consistently
better than P-FP, though the average improvement is modest,
in the range of 0%-10%. From a schedulability point of view,
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we expect APA scheduling to provide the most benefit for task
sets that cannot be partitioned easily, nor are schedulable by
global scheduling. However, due to the difficulty of (randomly)
generating such task sets, the experiment does not show the
improvement that G-FP-APAe provides over its partitioned and
global counterparts for such workloads.

Experiment 2 (G-FP-APAh vs. G-FP-APAe): The objective
of this experiment is to understand if the performance of
the heuristic-based APA schedulability analysis G-FP-APAh
is comparable to the exhaustive test G-FP-APAe. We used
a similar experimental setup as in the first experiment, but
applied both the G-FP-APAh and G-FP-APAe tests. The results
in Figure 4 show that G-FP-APAh performs almost as well as
to G-FP-APAe, i.e., the curves vary only slightly. This validates
the efficiency of the used heuristic. Note that processor affinities
were generated randomly in this experiment, which explains
the overall lower schedulability compared to Experiment 1.

The experimental results demonstrate that the proposed
analysis—reduction to global subproblems—is indeed effective.
Further comparisons of APA scheduling with other scheduling
techniques and other affinity mask assignment heuristics will
certainly be interesting; however, such studies are beyond the
scope of this paper and remain the subject of future work.

VI. CONCLUSION AND OPEN QUESTIONS

In this paper, we investigated the schedulability analysis of
real-time task sets with APAs. While processor affinities have
been studied and used by application developers for providing
isolation and average-case enhancements, this work is the first
of its kind that explores APAs from a schedulability perspective.
We showed that APA-based JLFP scheduling strictly dominates
global, clustered, and partitioned JLFP scheduling. The primary
contribution of this paper, however, is our schedulability
analysis for APA scheduling, which is simple, efficient, and
reuses the extensive body of results for global scheduling
already available.13 In summary, the paper establishes that
arbitrary processor affinities are useful and can be analyzed
formally. Therefore, we hope to stir further research into the
design of improved analysis techniques for APA scheduling
and stronger models with more flexible migration strategies.

Since this paper is an initial step in the development of real-
time scheduling theory for APA scheduling, there is abundant
room for future work. First, a key question: is designing
schedulability analysis for APA scheduling based on global
schedulability analysis the best we can do? The results from our
experiments are inconclusive w.r.t. this question. To answer this
question, we need a feasibility test or any other schedulability
test for APA scheduling that could be used as a benchmark.
However, the major source of pessimism seems to be the
computation of interference for affinities with high degree
of overlaps, i.e., the interference computation assumes that
the processors in the overlapping region have to service the
entire demand of all the tasks that can be scheduled on

13Correction: some, but not all, results for global scheduling can be reused.
Compatibility with the proposed reduction-based analysis must be established
individually for each analysis prior to reuse; see Appendices A and B.
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Fig. 3. The comparison of APA scheduling (G-FP-APA) versus global
(G-FP-RTA) and partitioned (P-FP) scheduling.

those processors. This assumption is in some cases certainly
inaccurate because apart from the overlapping regions, an
interfering task can also be scheduled on other processors
in its processor affinity. Therefore, the development of new
schedulability analysis for APA scheduling from first principles
would provide a useful benchmark for future improvements.

However, the assumption that tasks with overlapping affini-
ties interfere with their entire workload is difficult to avoid in
the context of worst-case analysis since, according to Linux’s
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Fig. 4. The comparison of heuristic based G-FP-RTA algorithm w.r.t. the
exhaustive G-FP-RTA

push-pull semantics, a higher-priority task interfering with a
lower-priority task does not voluntarily yield the processor,
even if it could migrate to an otherwise idle processor. That is,
the Linux scheduler does not enact a migration if a scheduled
higher-priority task Th (executing on a processor Πx) may
“altruistically” give up its processor, in lieu of another processor
Πy (also in αh), so that a lower-priority task Tl can be
scheduled on Πx (effectively shifting Th from Πx to Πy).

For example, consider a simple task set with implicit

0 3
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⇧2

1 2

T1

T2

T3

T1

(a) Push-pull Schedule

0 3

⇧1

⇧3

⇧2

1 2

T1

T2

T3 T4

T1T2

T3

(b) Shifting Schedule

Fig. 5. The figures show the initial schedules of the task set T1(1, 2),
T2(2, 3), T3(3, 4), and T4(4, 12) having processor affinities {Π1}, {Π1,Π2},
{Π2,Π3}, and {Π3} respectively, when scheduled by (a) Linux’s push-pull
scheduler and (b) a hypothetical shifting-migrations-based scheduler.

deadlines, which consists of tasks T1(1, 2), T2(2, 3), T3(3, 4),
and T4(4, 12) having processor affinities {Π1}, {Π1,Π2},
{Π2,Π3}, and {Π3} respectively. Figure 5 illustrates the initial
portion of two possible schedules for this task set. Figure 5(a)
shows a schedule assuming Linux’s push-pull semantics. In
Figure 5(b), at time 1, T2 shifts from Π2 to Π1 and T3 shifts
from Π3 to Π2 to enable scheduling of T4. While in the
push-pull schedule, T4’s job finishes its execution at time 12,
in the second schedule, it finishes its execution at time 4.
Therefore, we conjecture that a stronger migration rule like
shifting will allow processor affinities to provide significantly
higher schedulability, and so we seek to explore the design
space of shifting-based scheduling algorithms in future work.

Finally, APAs do not place any restrictions on when
migrations can take place. Another obvious generalization
of the studied problem would be to interpret each αi as
function of time (similar to priorities), which could be used to
generalize many semi-partitioned schedulers, and other hybrid
schedulers, in the literature. There is also a significant room
for improvements by exploring the problem of finding optimal
processor affinities and optimal priority assignments.

Acknowledgement. We thank Sanjoy Baruah for pointing out
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multiprocessors and restricted identical machines, and Geoffrey
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paper (as documented in Appendix A).
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APPENDIX

A. ERRATUM — GENERALITY OF REDUCTION

The original version of this paper [24], presented at the 25th

Euromicro Conference on Real-Time Systems, overstated the
generality of the reduction-based analysis. As kindly brought
to our attention by Geoffrey Nelissen, the proposed reduction
method is in fact not compatible with all schedulability tests
for global scheduling, and in particular not with exact (i.e.,
necessary and sufficient) schedulability tests. To this end,
the paper has been revised to clearly identify the incorrectly
overgeneralized claims, and to establish the correctness of the
approach for specific global schedulability tests. In particular,
the following changes have been made.

1) In Appendix A.1, we document and explain the counterex-
ample to Lemma 2 provided by Geoffrey Nelissen that
illustrates the limits of the reduction.

2) In the process of revising the paper, we became aware
that Lemma 4, which is stated in terms that suggest
that it applies generally to all JLFP policies, does in
fact not apply to certain JLFP policies such as EDF. In
Appendix A.2, we document a counterexample.

3) We revised Sec. IV to mark Lemmas 2 and 4, and all
dependent claims, as incorrect.

4) In Appendix B, we show Bertogna and Cirinei’s response-
time analyses for FP and EDF scheduling (both with and
without slack updates) [10] to be compatible with the
proposed reduction approach.

Finally, we note that the experiments reported on in Sec. V
are not affected by this erratum because the employed global
schedulability test — Bertogna and Cirinei’s response-time
analysis for FP scheduling [10] — is in fact compatible, as
argued in Appendix B.2.

A.1 Counterexample — Not All Global Schedulability Tests
are Compatible with the Proposed Reduction Technique

In this appendix, we summarize the counterexample provided
by Geoffrey Nelissen, which contradicts the following overly
general claim made in the original paper.

Refuted Claim 1 (Lemma 2): “If a task Ti ∈
tasks(αi) is schedulable when the reduced task
set tasks(αi) is globally scheduled on the reduced
processor platform αi using a JLFP policy A, then
Ti is also schedulable under APA scheduling of τ
on the processor platform π using the same JLFP
policy A.”

Differently from what has been implicitly stated, the reduc-
tion technique does not work with every global schedulability
analysis, as demonstrated by the following examples.

Example 3 (Nelissen’s example – periodic tasks):
Consider task set τper = {T1 = (2, 10), T2 = (2, 10), T3 =
(4, 10), T4 = (7, 10)}. If job arrivals are assumed to be
periodic, we can derive an exact schedulability analysis
that uses the hyperperiod as a feasibility interval. From the
simulation of the schedule shown in Figure 6 (assuming FP

⇧1

⇧2

2 4 100

T2

T1

6 9

T3

T4

Fig. 6. FP schedule of task set τper under global scheduling. Note that task
T3 does not interfere with T4, which completes at time 9 and thus meets its
deadline at time 10.
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T2T1
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T4

Fig. 7. FP schedule of task set τper under APA scheduling if tasks T1 and
T2 are restricted to processor Π1. Due to the resulting loss of parallelism, the
interference of T3 on T4 increases by 4 time units (w.r.t. Figure 6), which
causes T4 to miss its deadline at time 10.

scheduling), it follows that task set τper is schedulable under
global scheduling.

Next, consider the same task set under APA scheduling,
where tasks T1 and T2 are restricted to processor Π1 (i.e.,
α1 = α2 = {Π1}), and T3 is restricted to processor Π2

(i.e., α3 = {Π2}). Consider the schedulability of the lowest-
priority task T4, which can execute on both processors (α4 =
{Π1,Π2}). In the corresponding schedule, which is shown
in Figure 7, a lack of parallelism causes task T4 to miss its
deadline at time 10. Therefore, when an exact schedulability
analysis is employed, the fact that task T4 is schedulable
under global scheduling (Figure 6) does not imply that it is
schedulable under APA scheduling (Figure 7).

Example 3 shows that Claim 1 does not hold for periodic
tasks. Furthermore, while this observation by itself does not
necessarily extend to sporadic tasks, it is also possible to derive
a similar counterexample assuming sporadic tasks, as shown
next. As in Example 3, the key observation is that, by restricting
processor affinities of higher-priority tasks, interference that
coincides under global scheduling is serialized under APA
scheduling, leading to a deadline miss in a lower-priority task.

Example 4 (Nelissen’s example – sporadic tasks):
Consider a sporadic task set τ spo = {T1 = (1, 2), T2 =
(1, 3), T3 = (5, 1000), T4 = (1, 5)} to be scheduled under
global FP scheduling. We first argue that task T4 is schedulable
for any job arrival sequence, by considering two cases for the
arrival times of tasks T1 and T2. Let J denote an arbitrary
job of T4.

Case 1: Tasks T1 and T2 do not release a job simultaneously
while J is pending. Consider the time window of length four
starting with the arrival of J and ending at its absolute deadline.
Even if tasks T1 and T2 release jobs as fast as possible (limited
by their periods), there can be no more than three jobs of T1

and T2 in such a time window (as their job arrival times never
coincide), which limits the inference incurred by J due to T1

and T2 to at most three time units. Moreover, even if task T3

occupies a processor throughout the interval, it causes at most
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Fig. 8. FP schedules of task set τ spo under global and APA scheduling. Insets (a) and (b) correspond, respectively, to Case 1 (tasks T1 and T2 never release
a job simultaneously) and Case 2 (tasks T1 and T2 release jobs at the same time at least once) in Example 4. For simplicity, only a single job of task T4

is shown. Since the interference incurred by T4’s job in either case does not exceed four time units, T4 is schedulable under global scheduling. Inset (c)
corresponds to the schedule of the same task set under APA scheduling, assuming a synchronous task set release with periodic arrival times and restricted
processor affinities α1 = α2 = {Π1}, α3 = {Π2} and α4 = {Π1,Π2}. Due to the loss of parallelism caused by affinity restrictions, task T4 incurs five
times units of interference and misses a deadline.

four time units of interference, for a total of at most seven
time units of interference due to T1, T2, and T3. Thus, there
exists at least one time at which one of the two processors
is available for task T4 to meet its deadline. This worst-case
scenario is depicted in Figure 8(a).

Case 2: There exists at least one time t at which both tasks
T1 and T2 release jobs while J is pending. In that case, the
jobs of tasks T1 and T2 released at time t execute in parallel
and task T4 is only interfered with for one time unit (instead
of two as in Case 1). Thus, as shown in Figure 8(b), the total
interference incurred by task J is not larger than in Case 1,
where job arrivals of T1 and T2 do not coincide.

In both cases, the response time of J is limited to four
time units, which implies that T4 meets all deadlines under
global scheduling. However, this is not the case when certain
processor affinities are enforced: as in Example 3, if α1 =
α2 = {Π1}, α3 = {Π2} and α4 = {Π1,Π2}, then task T4

misses a deadline, as shown in Figure 8(c). Thus, the fact that
task T4 is schedulable under global scheduling (Figures 8(a)
and 8(b)) does not imply that it is schedulable under APA
scheduling (Figure 8(c)), which contradicts Claim 1.

Nelissen’s counterexamples expose scenarios in which the
proposed reduction fails when combined with an exact schedu-
lability analysis for global scheduling. Although we compare
schedules with the same set of interfering tasks, some properties
of the task set (e.g., the lowest upper bound on task interference)
may change when processor affinities are introduced. Further,
while certain sufficient (but not necessary) global schedulability
tests can be applied directly because the pessimism inherent in
these tests masks the difference in interference between global
and APA scheduling, there is no guarantee that all sufficient
(but not necessary) tests are compatible. Thus, each test must
be shown to be compatible before it may be applied in the
proposed reduction technique.

In Appendix B, we show three response-time analyses
proposed by Bertogna and Cirinei [10] to be compatible.

A.2 Counterexample — Enlarging a Task’s Affinity Does Not
Necessarily Preserve Schedulability under EDF

In the process of reviewing Sec. IV, we observed that
Lemma 4, reproduced below, was stated in incorrectly over-
generalized terms, too.

Refuted Claim 2 (Lemma 4): “If a task Ti ∈ τ is
schedulable under APA scheduling with the processor
affinity α′i ⊂ αi and task set τ , then Ti is also
schedulable under APA scheduling with the affinity
αi and task set τ .”

The lemma in this form does not hold under all JLFP policies.
In the following, we document a counterexample to the claim.

According to the APA scheduling invariant, and also as
implemented by Linux’s APA scheduler, a task Ti can (non-
deterministically) start execution on any processor in its
affinity αi and preempt lower-priority jobs, independently of
how restrictive the affinities of the lower-priority jobs are.
Furthermore, under a JLFP policy such as EDF, a task Ti can
indirectly delay one of its own subsequent jobs by preempting
a lower-priority job that represents higher-priority demand w.r.t.
a future job of Ti. That is, preempting a lower-priority job can
increase the magnitude of future higher-priority interference.

Hence, for certain JLFP policies such as EDF, enlarging the
affinity of a task Ti from α′i to αi is not guaranteed to preserve
schedulability of Ti because it can increase the interference on
other tasks that execute on processors in αi \α′i, which in turn
can transitively delay a subsequent job of Ti. Such a scenario
is demonstrated in the following example.

Example 5: Consider a constrained-deadline task set τ ′

consisting of tasks T1 = (1, 5, 10), T2 = (1, 5, 10), T3 =
(4, 5, 10), and T4 = (8, 13, 13), to be scheduled on a platform
π = {Π1,Π2} under APA scheduling using EDF. The processor
affinities of the tasks in τ are given by α1 = {Π1,Π2}, α2 =
{Π1,Π2}, α′3 = {Π2} and α4 = {Π1}, respectively. Assume
that T3 is the task to be analyzed and that ties in absolute
deadline are broken in favor of lower-indexed tasks.

Figure 9 shows the schedule of τ ′ assuming a synchronous,
periodic arrival sequence. As denoted in the figure as di,j , the
first jobs of T1, T2, and T3 each have an absolute deadline
at time 5; the job of T4 has an absolute deadline at time 13,
and the second jobs of T1, T2, and T3 each have an absolute
deadline at time 15.

For this particular arrival sequence, and also in the general
case, task T3 never misses any deadline. This follows from the
fact that tasks T1 and T2 can either be released simultaneously
(as depicted), or at different times (not shown in the figure), but
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Fig. 9. EDF schedule of task set τ ′ under APA scheduling. With a restricted
affinity α′

3 = {Π2}, task T3 meets its deadline at time 15.
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Fig. 10. EDF schedule of task set τ under APA scheduling. When task T3

has a larger affinity α3 = {Π1,Π2}, it can delay a job of T4, which in turn
can interfere with the later-released second job of T3. As a result, T3 misses
its deadline at time 15.

in both cases there is always enough time for T3 to complete,
since the total delay experienced by any of T3’s jobs due to
T1 and T2 never exceeds one time unit:

• if T1 and T2 release jobs simultaneously, they will execute
in parallel; and

• if one releases a job later than the other, at least one of
them either has an absolute deadline past T3’s current
job’s absolute deadline, or will have completed before
T3’s next job is released.

Next, consider a task set τ that is virtually identical to τ ′,
except that task T3 has a larger affinity α3 = {Π1,Π2}. As
depicted in Figure 10, if task T3 is released and starts execution
on processor Π1 (as allowed under the APA scheduling
invariant), this delays task T4, which is not able to execute
elsewhere due to its restrictive affinity. Since, under EDF, T4’s
jobs can interfere with later-released jobs of the other tasks,
this additional delay generates backlogged demand that affects
the second job of task T3, causing a deadline miss at time 15.

This example shows that, even though task T3 is schedulable
assuming a reduced affinity α′3 = {Π2}, it is not schedulable
when assuming a larger affinity α3 = {Π1,Π2}, which
contradicts Claim 2.

Nonetheless, the intuition that it is sufficient to consider only
a subset of a task’s affinity when analyzing interference is not
entirely wrong; Lemma 6 in Appendix B.1 restates the basic
idea underlying Claim 2 in more accurate terms.

B. APA-COMPATIBILITY OF RESPONSE-TIME ANALYSIS

In this appendix, we show three response-time analy-
ses (RTAs) proposed by Bertogna and Cirinei [10] to be
compatible with the proposed reduction approach:

1) RTA for FP scheduling without slack updates, which was
used in the experiments reported on in Sec. V,

2) RTA for FP scheduling with slack updates, and
3) RTA for EDF scheduling with slack updates (which

subsumes RTA for EDF scheduling without slack updates).
These RTAs for global scheduling are compatible with APA

scheduling in the sense that, if the corresponding equations
are instantiated for global-like subproblems (for each task)
as described in Sec. IV, then the task set is schedulable
under APA scheduling if for each equation a valid solution
can be found (i.e., one not exceeding each task’s relative
deadline). We establish this notion of compatibility in detail in
Appendices B.2–B.4 after first introducing required definitions
and auxiliary lemmas.

B.1 Preliminaries

Central to Bertogna and Cirinei’s analysis [10] are the notions
of “workload” and “interference,” which we briefly recall here
in preparation.
• A task Tk’s workload during a given interval [t0, t0+∆) is

the maximum total time that jobs of Tk use any processor
during [t0, t0 +∆). Regardless of the employed scheduler,
it is possible to upper-bound the maximum total workload
of Tk in any contiguous interval of length ∆ based solely
on Tk’s period, deadline, and WCET, assuming that Tk
does not miss any deadlines.

• A task Tk’s execution at a time t constitutes interference
for another task Ti iff Ti is backlogged at time t (i.e., Ti
has a ready job that is not scheduled) and a job of Tk is
scheduled on a processor on which Ti may execute (i.e.,
a processor in αi under APA scheduling, or any processor
in π under global scheduling).

Clearly, a task Tk causes another task Ti to incur interference
only if Tk’s current job has higher priority than Ti’s backlogged
job. As the maximum total interference caused by Tk in a given
interval is bounded by its workload (a task must be scheduled to
interfere), Bertogna and Cirinei [10] established the following
generic workload bound to analyze interference.

Definition 1 (workload bound [10]): Consider an arbitrary
interval [t0, t0 + ∆) of length ∆ and a constrained-deadline
task Tk. If all jobs of Tk with deadlines before t0 + ∆ do
not miss their deadline, then Tk’s maximum workload during
[t0, t0 + ∆) is bounded (under any scheduler) by

Wk(∆) = nk(∆) · ek+min (ek, ∆ + dk − ek − nk(∆) · pk),

where nk(∆) =
⌊

∆+dk−ek
pk

⌋
upper-bounds the number of jobs

that execute for their entire WCET during [t0, t0 + ∆).

Bertogna and Cirinei [10] further refined their workload
bound by taking into account that a known bound on a
task’s maximum response time also implies a lower bound
on its “slack,” i.e., the difference between the task’s maximum
response time and its relative deadline. If a task has non-zero
slack, there exists a “gap” between any two consecutive job
releases during which the task does not have a pending job,
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which in turn imposes a bound on the maximum work that
the task can carry into a contiguous interval. Bertogna and
Cirinei [10] exploited this observation to derive the following
slack-aware bound.

Definition 2 (slack-aware workload bound [10]):
Consider an arbitrary interval [t0, t0 + ∆) of length ∆
and a constrained-deadline task Tk. If the response times of
all jobs of Tk with deadlines before t0 + ∆ are bounded by
Rk, where Rk ≤ dk, then Tk’s maximum workload during
[t0, t0 + ∆) is bounded (under any scheduler) by

W ′k(∆) = n′k(∆) · ek +

min(ek, ∆ + dk − ek − sk − n′k(∆) · pk),

where sk = dk − Rk is a lower bound on the slack of task
Tk, and n′k(∆) =

⌊
∆+dk−ek−sk

pk

⌋
upper-bounds the number

of jobs that execute for their entire WCET during [t0, t0 + ∆).

Definitions 1 and 2 are generic in the sense that they apply
to any work-conserving scheduler. Bertogna and Cirinei [10]
further established an interference bound specific to EDF
that takes into account that not all of a task’s workload
may constitute interference under EDF due to the dynamic
prioritization of jobs.

Definition 3 (interference bound for EDF [10]): Consider
a constrained-deadline task Tk and an interval [t0, t0 + di) of
length di that starts with the release of a job J of another
task Ti and that ends at the absolute deadline of J . If the
response times of all jobs of Tk with deadlines before t0 + di
are bounded by Rk, where Rk ≤ dk, then, under EDF, the
maximum interference incurred by J due to jobs of Tk is
bounded by

Iki = DBF ki + min

(
ek, max

(
0, di −DBF ki ·

pk
ek
− sk

))
,

where sk = dk −Rk is a lower bound on the slack of task Tk,
and where DBF ki =

(⌊
di−dk
pk

⌋
+ 1
)
· ek is an upper bound on

the demand of task Tk in the scheduling window of any job of
task Ti (i.e., the maximum cumulative execution requirement
of all jobs of task Tk that both are released and have a deadline
in a contiguous interval of length di).

Since the individual bounds that comprise Iki depend only on
fixed tasks parameters, the assumption that jobs of Tk respect
a known response-time bound Rk, and the fact that jobs are
prioritized according to EDF, Iki is valid under both global
and APA scheduling (provided a suitable scheduler-specific
bound Rk has been established).

Next, we establish two auxiliary lemmas concerning the total
interference incurred by a job under APA scheduling. First, we
observe that a lower bound on total interference also implies a
lower bound on interference due to tasks that may execute on
a subset of the processors.

Lemma 6: Let J denote a job of task Ti ∈ τ , and let tr
denote J’s release time. Consider an interval [tr, tr + ∆) of
length ∆, and let xk denote the interference incurred by J due
to task Tk ∈ τ during [tr, tr + ∆), i.e., the total time that jobs

of Tk execute on processors in αi during [tr, tr + ∆) while J
is pending and not scheduled. Let α′i ⊆ αi denote an arbitrary
non-empty subset of processors on which Ti may be scheduled.
Under APA scheduling with any JLFP policy, if∑

Tk∈τ
xk ≥ |αi| · (∆− ei + 1),

then also ∑
Tk∈tasks(α′

i)

xk ≥ |α′i| · (∆− ei + 1).

Proof: By definition of each xk, J incurs interference for
exactly

∑
Tk∈τ xk

|αi| ≥ ∆−ei+1 time units during [tr, tr+∆). A
task Tk causes Ti to incur interference only when all processors
in αi are occupied by tasks other than Ti. Thus, each of the
processors in α′i must be busy executing jobs other than J while
J is pending for at least ∆− ei + 1 time units, for a total of at
least |α′i| · (∆− ei + 1) time units consumed by higher-priority
jobs across all processors in α′i while J is pending. Since only
tasks in tasks(α′i) = {Tk | Tk ∈ τ ∧ αk ∩ α′i 6= ∅} can
execute on processors in α′i, it follows that

∑
Tk∈τ

αk∩α′
i 6=∅

xk =∑
Tk∈tasks(α′

i)
xk ≥ |α′i| · (∆− ei + 1).

Finally, Lemma 7, which is modeled after Lemma 4 in [11],
establishes that each task’s contribution to the total interference
can be safely capped.

Lemma 7: Let J denote a job of task Ti ∈ τ , and let tr
denote J’s release time. Consider an interval [tr, tr + ∆) of
length ∆, and let xk denote the interference incurred by J due
to task Tk ∈ τ during [tr, tr + ∆), i.e., the total time that jobs
of Tk execute on processors in αi during [tr, tr + ∆) while J
is pending and not scheduled. Let α′i ⊆ αi denote an arbitrary
non-empty subset of processors on which Ti may be scheduled.
Under APA scheduling with any JLFP policy, if∑

Tk∈tasks(α′
i)

xk ≥ |α′i| · (∆− ei + 1),

then also∑
Tk∈tasks(α′

i)

min(xk, ∆− ei + 1) ≥ |α′i| · (∆− ei + 1).

Proof: Let A ⊆ tasks(α′i) denote the set of tasks in
tasks(α′i) that cause J more than ∆ − ei + 1 interference
during [tr, tr + ∆), i.e.,

A , {Tj | Tj ∈ tasks(α′i) ∧ xj > ∆− ei + 1} ,

and let B , tasks(α′i) \A. Then:∑
Tk∈tasks(α′

i)

min(xk, ∆− ei + 1)

=
∑
Tk∈A

(∆− ei + 1) +
∑
Tk∈B

xk

= |A| · (∆− ei + 1) +
∑
Tk∈B

xk.

We consider three cases based on the cardinality of A.

16



Case 1: If |A| = 0, then trivially B = tasks(α′i), and
thus

∑
Tk∈tasks(α′

i)
min(xk, ∆−ei+1) = |A|·(∆− ei + 1)+∑

Tk∈B xk =
∑
Tk∈tasks(α′

i)
xk ≥ |α′i| · (∆− ei + 1).

Case 2: If |A| ≥ |α′i|, then tasks in B are irrelevant
and trivially

∑
Tk∈tasks(α′

i)
min(xk, ∆ − ei + 1) ≥ |A| ·

(∆− ei + 1) ≥ |α′i| · (∆− ei + 1).

Case 3: If 0 < |A| < |α′i|, then the interference due to
tasks in both A and B needs to be considered. Because a task
causes interference only when all processors in α′i are taken up
by jobs other than J , any task’s interference implies a lower
bound on the interference caused by other tasks. In particular,
since 0 < |A| < |α′i|, whenever one of the tasks in A causes
interference, at least |α′i| − |A| of the cores in α′i are taken up
by tasks in B, and thus∑

Tk∈B
xk ≥ (|α′i| − |A|) · min

Tj∈A
{xj}

≥ (|α′i| − |A|) · (∆− ei + 1).

Then:∑
Tk∈tasks(α′

i)

min(xk, ∆− ei + 1)

= |A| · (∆− ei + 1) +
∑
Tk∈B

xk

≥ |A| · (∆− ei + 1) + (|α′i| − |A|) · (∆− ei + 1)

= |α′i| · (∆− ei + 1).

B.2 FP RTA without Slack Updates

In this appendix, we establish that Bertogna and Cirinei’s
response-time analysis for FP scheduling without slack up-
dates [10], which was used in the experiments reported on in
Sec. V, can be safely applied under APA scheduling using
the reduction approach described in Sec. IV. We begin with a
review of the original analysis for global scheduling.

Review: Assume sporadic tasks with constrained deadlines.
Let Iki (t) denote an upper bound on the interference of a
higher-priority task Tk on task Ti in an interval of length t that
starts with the release of a job of Ti. Based on the workload
bound (Definition 1), Iki (t) is defined as follows:

Iki (t) = min(Wk(t), t− ei + 1). (12)

For notational convenience, we set Iki (t) = 0 if task Tk’s
priority is lower than task Ti’s priority or if i = k.

Based on the per-task interference bound Iki (t) and task
priorities, an upper bound on the maximum response time of
task Ti under global FP scheduling is given by the smallest
positive solution to the recurrence

RGi = ei +
1

m
·
∑
Tk∈τ

Iki (RGi ), (13)

assuming no deadline is missed by any higher-priority task in
τ . If Equation 13 does not converge to a fixed point less than or

equal to di, then task Ti is assumed to be not schedulable under
global FP scheduling and the upper bound on its maximum
response time remains undefined.

Proof of compatibility: We next show that, under analogous
preconditions and for a given subset of processors α′i ⊆ αi, a
valid solution to Equation 13 instantiated for the global-like
subproblem induced by α′i — with m replaced by |α′i| and τ
replaced by tasks(α′i) — implies schedulability of Ti under
APA scheduling.

Lemma 8: Let τ denote a task set to be scheduled under
FP APA scheduling on a processor platform π. For any Ti ∈ τ ,
if no deadline is missed by any higher-priority task in τ (under
FP APA scheduling on platform π), and if there exists a non-
empty set of processors α′i ⊆ αi such that Equation 14

Rapa
i = ei +

1

|α′i|
·

∑
Tk∈tasks(α′

i)

Iki (Rapa
i ) (14)

has a least positive solution Rapa
i ≤ di, then Rapa

i upper-
bounds task Ti’s response time in any schedule of τ under FP
APA scheduling.

Proof: By contradiction. Suppose that Equation 14 has a
solution Rapa

i ≤ di and no deadline is missed by any higher-
priority task in tasks(α′i), but there exists a schedule S of τ
under APA scheduling in which a job of Ti has a response time
greater than Rapa

i , i.e., in which a job of Ti remains pending
for more than Rapa

i time units.

Let J denote the first job of Ti to remain pending for
more than Rapa

i time units in S and let tr denote J’s release
time. Let X ⊆ [tr, tr + Rapa

i ) denote all times at which
J is interfered with before time tr + Rapa

i , i.e., all times at
which Ji is not scheduled during [tr, tr +Rapa

i ). Since J does
not complete by time tr + Rapa

i , it is scheduled for strictly
less than ei time units during [tr, tr + Rapa

i ), and therefore
|X| ≥ tr +Rapa

i − tr − (ei − 1) = Rapa
i − ei + 1.

Let xk denote the interference incurred by J due to task
Tk before time tr +Rapa

i , i.e., the total time that jobs of Tk
execute on processors in αi during [tr, tr +Rapa

i ) while J is
not scheduled.

Since under FP scheduling only higher-priority tasks cause
interference, and because no deadline is missed by any higher-
priority task, we observe that, according to Definition 1,

xk ≤Wk(Rapa
i ) (15)

since a task must be scheduled to interfere.

Since all processors in αi are busy executing jobs of higher-
priority tasks when J is not scheduled, we have∑

Tk∈τ
xk = |X| · |αi| ≥ |αi| · (Rapa

i − ei + 1),

and therefore, by Lemmas 6 and 7, also∑
Tk∈tasks(α′

i)

min(xk, R
apa
i − ei + 1) ≥ |α′i| · (R

apa
i − ei + 1),
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or, rearranged and strengthened to a strict inequality,

ei +
1

|α′i|
·

∑
Tk∈tasks(α′

i)

min(xk, R
apa
i − ei + 1) > Rapa

i .

It follows, by the definition of Rapa
i (Equation 14), that

ei +
1

|α′i|
·

∑
Tk∈tasks(α′

i)

min(xk, R
apa
i − ei + 1)

> ei +
1

|α′i|
·

∑
Tk∈tasks(α′

i)

Iki (Rapa
i ),

or, simplified,∑
Tk∈tasks(α′

i)

min(xk, R
apa
i − ei + 1) >

∑
Tk∈tasks(α′

i)

Iki (Rapa
i ).

This implies that there exists a task Tk ∈ tasks(α′i) such
that

min(xk, R
apa
i − ei + 1) > Iki (Rapa

i ).

Since lower-priority tasks cannot cause interference under FP
scheduling, and since Ti does not interfere with itself (recall that
J is the first job with a response time greater than Rapa

i ≤ di
and the restriction to constrained deadlines), it follows that
xk > 0 is possible only if Tk is a higher-priority task. Therefore,
we have Iki (t) = min(Wk(t), t− ei + 1), and thus

min(xk, R
apa
i − ei + 1) > min(Wk(Rapa

i ), Rapa
i − ei + 1).

However, this implies xk > Wk(Rapa
i ), which by Inequality 15

is impossible. Contradiction.

Schedulability of the entire task set may be established by
applying Lemma 8 to each task in τ in order of decreasing
priority. Most importantly, Lemma 8 shows that it is safe to
employ Bertogna and Cirinei’s RTA for FP scheduling without
slack updates [10] as the underlying schedulability test in
the reduction approaches proposed in Lemmas 3 and 5 and
Algorithm 1. The results reported on in Sec. V are thus not
affected by this erratum.

B.3 FP RTA with Slack Updates
In this appendix, we argue that considering slack in the basic

RTA (Appendix B.2) preserves compatibility with the proposed
reduction-based approaches. First, we review the underlying
slack-aware response-time bound [10].

Review: Based on the slack-aware workload bound W ′k(t)
for constrained-deadline tasks (Definition 2), Bertogna and
Cirinei [10] defined the following refined interference bound:

Iki
′
(t) = min(W ′k(t), t− ei + 1). (16)

As before, we set Iki
′
(t) = 0 if task Tk’s priority is lower than

task Ti’s priority or if i = k.
The response-time bound RGi for task Ti under global FP

scheduling is then simply defined as the least positive solution
of the equation

RGi = ei +
1

m
·
∑
Tk∈τ

Iki
′
(RGi ) (17)

that is not greater than deadline di, assuming that for each
higher-priority task Th a response-time bound not exceeding dh
is known. Each response-time bound RGi is computed in order
of decreasing task priority, starting with the highest-priority
task T1, for which RG1 = e1.

Proof of compatibility: We argue that, under analogous
preconditions and for a given subset of processors α′i ⊆ αi, a
valid solution to Equation 17 instantiated for the global-like
subproblem induced by α′i — with m replaced by |α′i| and τ
replaced by tasks(α′i) — implies schedulability of Ti under
APA scheduling.

Lemma 9: Let τ denote a task set to be scheduled under
FP APA scheduling on a processor platform π. For any task
Ti ∈ τ , if an upper bound on the maximum response-time
Rapak ≤ dk is known for each higher-priority task Tk ∈ τ
(under FP APA scheduling on platform π), and if there exists
a non-empty set of processors α′i ⊆ αi such that Equation 18

Rapa
i = ei +

1

|α′i|
·

∑
Tk∈tasks(α′

i)

Iki
′
(Rapa

i ) (18)

has a least positive solution Rapa
i ≤ di, then Rapa

i upper-
bounds task Ti’s response time in any schedule of τ under FP
APA scheduling.

Proof: The lemma follows virtually identically to
Lemma 8: suppose a job of Ti exceeds the claimed response-
time bound Rapa

i , and define xk as in the proof of Lemma 8. By
Definition 2, since only higher-priority tasks cause interference
and because a response-time bound is known for each higher-
priority task, we have xk ≤ W ′k(Rapa

i ). The remainder of
the proof proceeds analogously to the proof of Lemma 8 by
replacing Iki (t) = min(Wk(t), t − ei + 1) with the refined
interference bound Iki

′
(t) = min(W ′k(t), t− ei + 1).

Again, schedulability of the entire task set may be established
by applying Lemma 9 to each task in τ in order of decreasing
priority. The task set is schedulable under FP APA scheduling
if Equation 18 yields a valid bound Rapa

i ≤ di for each task
Ti ∈ τ . Lemma 9 thus establishes that Bertogna and Cirinei’s
RTA for FP scheduling with slack updates [10] is compatible
with the reduction approaches proposed in Lemmas 3 and 5
and Algorithm 1.

B.4 EDF RTA with Slack Updates

In this appendix, we establish that Bertogna and Cirinei’s
RTA for EDF scheduling with slack updates [10] is compatible
with the reduction-based approach. We begin with a review of
the original analysis.

Review: Bertogna and Cirinei’s response-time analysis for
EDF with slack updates follows in large parts the same idea
as their slack-aware RTA for FP discussed in Appendix B.3,
namely by exploiting slack bounds to derive more accurate
workload and interference bounds.

However, since all tasks can potentially interfere with each
other under EDF, the approach is slightly more involved under
EDF. More precisely, as slack bounds have to be computed
using response-time bounds for mutually interfering tasks, a
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circular dependency exists, which is resolved with an additional
fixed-point search across the entire task set.

To this end, Bertogna and Cirinei’s slack-aware RTA for EDF
proceeds in rounds. In each round, each task’s response-time
bound is computed using slack estimates based on results from
the previous round. In the following, we let RG1 (j), . . . , RGn (j)
denote the response-time bounds obtained in the jth round,
and let s(j)

1 , . . . , s
(j)
n denote the slack estimates (for each task,

respectively) used in the jth round, i.e., the slack bounds used
to obtain RG1 (j), . . . , RGn (j).

Initially, in the first round, s(1)
i = 0 for each task Ti ∈ τ .

After each round, slack updates are determined by the following
rule, for j ≥ 1 and each task Ti ∈ τ :

s
(j+1)
i =

{
di −RGi (j) if RGi (j) ≤ di,
0 if RGi (j) is undefined.

Next, we review how to compute each RGi (j). To exploit
prior slack updates, Bertogna and Cirinei introduced a refined
interference bound (for i 6= k)

Iki
′
(t) = min(W ′k(t), Iki , t− ei + 1), (19)

where W ′k(t) is defined as given in Definition 2 and computed
using the current slack estimates s(j)

1 , . . . , s
(j)
n , and where Iki

is defined as given in Definition 3 (and also computed using
the current slack estimates). If i = k, then Iki

′
(t) = 0.

Based on Iki
′
(RGi (j)), and hence implicitly also based on

s
(j)
1 , . . . , s

(j)
n , an upper bound on the response time of task

Ti ∈ τ is given by the least positive solution of the equation

RGi (j) = ei +
1

m
·
∑
Tk∈τ

Iki
′
(RGi (j)) (20)

that is not greater than deadline di. If no such least fixed point
RGi (j) ≤ di exists, then RGi (j) is undefined (and s(j+1)

i = 0).

Bertogna and Cirinei’s slack-aware RTA for EDF terminates
after round j if s(j)

i = s
(j−1)
i for each Ti ∈ τ , i.e., when a

global fixed point is reached. After termination in round j, the
task set is deemed schedulable iff, for each Ti ∈ τ , RGi (j) is
defined and RGi (j) ≤ di, i.e., if the per-task fixed-point search
did not fail to converge for any task.

Proof of compatibility: We establish that, if Equation 20,
instantiated for each task’s global-like subproblem, has a valid
solution for each task, then all tasks are schedulable under
EDF APA scheduling.

Lemma 10: Let τ denote a task set to be scheduled under
EDF APA scheduling on a processor platform π. If there
exist processor subsets α′1, . . . , α

′
n and least positive solutions

Rapa
1 , . . . , Rapa

n such that, for each Ti ∈ τ , α′i ⊆ αi, R
apa
i ≤

di, and Rapa
i is the least positive solution of Equation 21 below

Rapa
i = ei +

1

|α′i|
·

∑
Tk∈tasks(α′

i)

Iki
′
(Rapa

i ), (21)

where Iki
′
(Rapa

i ) is computed as defined in Equation 19 based
on the response-times of all other tasks, then all tasks in τ are

schedulable and, for each task Ti ∈ τ , Rapa
i upper-bounds Ti’s

response time in any schedule of τ under EDF APA scheduling.
Remark: A consistent solution vector Rapa

1 , . . . , Rapa
n may

be easily found using a global fixed-point search as outlined
above in the review of the original global schedulability test;
however, for the purpose of establishing correctness under APA
scheduling, it is irrelevant how the solution Rapa

1 , . . . , Rapa
n

and the corresponding consistent slack values are determined.
Proof: The proof resembles the proof of Lemma 8. For

the sake of clarity, we repeat the argument in full detail.
By contradiction. Suppose that there exist processor sub-

sets α′1, . . . , α
′
n and a vector of least positive solutions

Rapa
1 , . . . , Rapa

n such that, for each Ti ∈ τ , α′i ⊆ αi, R
apa
i ≤

di, and Rapa
i is the least positive solution of Equation 21, but

there exists an EDF schedule S of τ under APA scheduling in
which a job of some task Ti ∈ τ has a response time exceeding
Rapa
i , i.e., in which a job of Ti remains pending for more than

Rapa
i time units.
Let t′ denote the first point in time that a job of some task

exceeds its task’s claimed response-time bound in S. Let J
denote (one of) the job(s) that exceed(s) the claimed response-
time bound(s) at time t′, and let Ti ∈ τ denote J’s task. Let tr
denote J’s release time. At time t′, J has been pending (for the
first time) for more than Rapa

i time units, i.e., t′ = tr +Rapa
i .

Let X ⊆ [tr, tr + Rapa
i ) denote all times at which J

is interfered with before time tr + Rapa
i , i.e., at which J

is not scheduled during [tr, tr + Rapa
i ). Since J does not

complete by time tr + Rapa
i , it is scheduled for strictly less

than ei time units during [tr, tr +Rapa
i ), and therefore |X| ≥

tr +Rapa
i − tr − (ei − 1) = Rapa

i − ei + 1.
Let xk denote the interference incurred by J due to task

Tk before time tr +Rapa
i , i.e., the total time that jobs of Tk

execute on processors in αi during [tr, tr +Rapa
i ) while J is

not scheduled. Because J is (among) the first job(s) to exceed
the claimed response-time bound(s), no job of task Tk with
a deadline before time tr +Rapa

i is pending for longer than
Rapa
k time units. Thus, based on Definition 2, the workload of

Tk during [tr, tr +Rapa
i ) is bounded by W ′k(Rapa

i ). We thus
have

xk ≤W ′k(Rapa
i ), (22)

for each Tk ∈ τ since a task must be scheduled to interfere.
Furthermore, recall from the discussion in Appendix B.1

that Iki is a valid interference bound under both global and
APA scheduling since the bound depends only on fixed tasks
parameters, the assumption that interfering jobs of a task
Tk comply with a known response-time bound, and the fact
that jobs are prioritized according to EDF. Therefore, by
Definition 3, we also have, for each Tk ∈ τ ,

xk ≤ Iki . (23)

Since all processors in αi are busy executing higher-priority
jobs when J is not scheduled, we have∑

Tk∈τ
xk = |X| · |αi| ≥ |αi| · (Rapa

i − ei + 1),

19



and therefore, by Lemmas 6 and 7, also∑
Tk∈tasks(α′

i)

min(xk, R
apa
i − ei + 1) ≥ |α′i| · (R

apa
i − ei + 1),

or, rearranged and strengthened to a strict inequality,

ei +
1

|α′i|
·

∑
Tk∈tasks(α′

i)

min(xk, R
apa
i − ei + 1) > Rapa

i .

Additionally, by Inequality 23, xk ≤ Iki for any Tk ∈
tasks(α′i), and thus also

ei +
1

|α′i|
·

∑
Tk∈tasks(α′

i)

min(xk, I
k
i , R

apa
i − ei + 1) > Rapa

i .

It follows, by the definition of Rapa
i (Equation 21), that

ei +
1

|α′i|
·

∑
Tk∈tasks(α′

i)

min(xk, I
k
i , R

apa
i − ei + 1)

> ei +
1

|α′i|
·

∑
Tk∈tasks(α′

i)

Iki
′
(Rapa

i ),

or, simplified,∑
Tk∈tasks(α′

i)

min(xk, I
k
i , R

apa
i − ei + 1) >

∑
Tk∈tasks(α′

i)

Iki
′
(Rapa

i ).

This implies that there exists a task Tk ∈ tasks(α′i) such
that

min(xk, I
k
i , R

apa
i − ei + 1) > Iki

′
(Rapa

i ).

Since Ti does not interfere with itself (recall that J is the
first job with a response time greater than Rapa

i ≤ di and the
restriction to constrained deadlines), it follows that xk > 0 is
possible only if k 6= i. Therefore, by Equation 19, we have
Iki
′
(t) = min(W ′k(t), Iki , t− ei + 1), and thus

min(xk, I
k
i , R

apa
i − ei + 1)

> min(W ′k(Rapa
i ), Iki , R

apa
i − ei + 1).

However, this implies xk > W ′k(Rapa
i ), which by Inequality 22

is impossible. Contradiction.
Therefore, all jobs of all tasks complete by their correspond-

ing claimed response-time bounds and all deadlines are met.

Lemma 10 establishes that Bertogna and Cirinei’s RTA for
EDF scheduling with slack updates [10] is compatible with the
proposed reduction-based approach, in the sense that the global
schedulability test can be reused for EDF APA scheduling by
instantiating it for each task’s global-like subproblem with a
straightforward syntactic adjustment.
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